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List of Symbols 
The purpose of this reference list is to define the symbols used throughout this document. 
In many cases they appear without definition, so the reader can refer to this list for 
clarification. Some symbols are used in more than one context, but it is assumed that its 
relevant definition is clear from the context. Any deviations from this list are defined 
within the context of the relevant section. 
 

Superscripts and Subscripts 

[ ]x̂   a unit vector along the axis defined by [x] 

[ ]x&   derivative of [x] with respect to time 

[ ]x&&   second derivative of [x] with respect to time 

[x]a  relative to the air mass 

[x]amb  ambient 

[x]AP  approach flight condition 

[x]b  in the body axis coordinate system 

[x]b  proportional portion of input signal in the feedback path 

[x]c  commanded value 

[x]c  in the geocentric surface frame coordinate system 

[x]cl  closed loop value of [x] 

[x]CR  cruise flight condition 

[x]d  desired value 

[x]ecef  in the earth-centered, earth-fixed coordinate system 

[x]G  ground 

[x]GS  glide slope 

[x]GT  ground track 

[x]i  in the inertial, flat-earth coordinate system 

[x]i  integral  portion of input signal 

[x]IC  initial climb flight condition 

[x]LD  landing flight condition 

[x]max  maximum 

[x]min  minimum 

[x]p  proportional portion of input signal in the feed-forward path 

[x]s  in the surface frame coordinate system (geodetic) 
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[x]sl  at sea level 

[x]st  in the stability axis coordinate system 

[x]t  total 

[x]TO  take-off flight condition 

[x]w  in the wind axis coordinate system 

[x]x  the x-axis component of [x] 

[x]y  the y-axis component of [x] 

[x]z  the z-axis component of [x] 

 

Primary Symbols 

Variables are in italic type-face, vectors and matrices are in bold type-face. The only 
exception is unit vectors, denoted with a ‘^’ in italic type-face. 

 

a  Acceleration 
  Semi-minor axis of the Earth 
  Temperature lapse rate in the standard atmosphere 
  Angle between intersecting segments 

a*  Speed of sound in the atmosphere 

A  State matrix of a state space representation 

AR  Aspect Ratio, b2/Sw  

b  Wing span 
  Semi-major axis of the Earth 

B  Input matrix of a state space representation 

C  Output matrix of a state space representation 

CL  Lift coefficient 

CLo
  Zero-lift lift coefficient 

RLC   Rotation lift coefficient 

CLα
  Lift curve slope, LC

α
∂
∂

 

CL eδ
  Variation of lift coefficient with elevator deflection, L

e

C
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CDo
  Zero lift drag coefficient 

CD  Drag coefficient 
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CP  Specific heat at constant pressure 

CV  Specific heat at constant pressure 
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1,c cT TC C−
3,
 BADA coefficients for determining maximum thrust 

Cθ  Cosine of θ 

D  Drag 
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e  specific energy 
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h&   Altitude rate 
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H  Angular momentum vector 
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  State variable representing the integrated portion of the lift coefficient 
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Iu  The integrated control vector 
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IASerror  The indicated airspeed error used to define the speed altitude plane 

J  Jacobian for solving systems of equations 

klag  A term used to characterize engine spooling lags 

kψ  Feedback gain for heading capture 

K  Induced drag factor 1
πeAR  
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K
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L   Rolling moment 
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L
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a

L
δ

∂
∂
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  Pitching moment 
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α

∂
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M
eδ   Pitching moment variation with elevator deflection 
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mIAS  Slope of the constant energy line for IAS based flight 
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N  Yawing moment 

n  Load factor 

nB  Scaled Gaussian white noise 
$ns   A unit vector normal to a segment 

p  Roll rate 
  Pressure 
  transfer function poles 

P.E.  Potential energy 

q  Pitch rate 
  Dynamic pressure 

r  Yaw rate 
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δe  Elevator deflection 
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δv  The rate of change of the lateral position error, δr 
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δψ  Heading bias; due, for example to wind or FTE 
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1. Introduction 
This document presents the analytical development of the aircraft dynamics model to 
support Seagull Technology’s contract  No. DTFA03-94-C-00042 (CADSS) with the 
FAA for the enhancement of the functional capabilities of the Target Generation Facility 
(TGF). Specifically, this document discusses the detailed engineering design and 
software implementation of an Aircraft Dynamics Model (ADM) suitable for 
incorporation into the FAA Target Generation Facility simulations at the FAA William J. 
Hughes Technical Center, Atlantic City, NJ. The model is designed to be implemented on 
computers located within the facility, and to work in conjunction with software models of 
radar, data links, and other Air Traffic Management (ATM) equipment to provide real-
time simulation of aircraft operating within the National Airspace System (NAS). This 
introductory section provides a brief background into the project as well as discusses the 
scope and organization of the document.  

1.1 Background 
The FAA Technical Center conducts research and development to investigate emerging 
Air Traffic Control (ATC & ATM) technologies, associated applications , and ATC 
processes and procedures. Inherent in these efforts is the requirement to emulate real-
world operational conditions in laboratory environments. This requirement extends 
across the operational domains  (e.g., Terminal, En Route, and Oceanic). Much of this 
work requires the establishment of operational test beds encompassing current 
operational as well as emerging prototype ATC systems. These test beds are frequently 
used to conduct studies that simulate the operational conditions found or desired in the 
associated domain. In the majority of cases, it is necessary to provide realistic 
representation of air traffic scenarios to evaluate the system, process, or procedure being 
evaluated. The Technical Center’s TGF provides this capability by producing simulated 
primary and secondary radar targets to the system under test. To the greatest extent 
possible, TGF produced targets must accurately reflect the flight dynamics of the aircraft 
which they represent.  
 
Currently, the aircraft dynamics incorporated in the TGF are based on a set of simple 
aircraft models which base aircraft performance on empirical estimators rather than 
dynamics models based on the first principles of physics and aeronautics. The current 
models do not provide the performance characteristics needed to support certain high 
fidelity simulations. The TGF does not incorporate fuel burn models or the capabilities 
necessary to introduce environmental (weather) effects. Furthermore, these models do not 
include many of the aircraft in the current United States inventory. 
 
Many of these missing functions limit the current TGF capabilities. As other simulation 
models are developed or brought to the Technical Center, higher fidelity will be required 
to identify NAS operational safety and performance issues. The TGF is prepared to 
increase its fidelity and operational connectivity required to meet the demands by the 
other FAA programs and simulators. The goal of this project has been to develop aircraft 
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models based on aircraft dynamics models and engineering first principles to enhance the 
TGF modeling capabilities.  
 

1.2 Scope 
This document provides a defendable,  theoretical foundation for the engineering theory, 
principles and algorithmic design of the Aircraft Dynamics Model. The engineering 
analysis starts with the first principles of aircraft flight mechanics and derives a 6-degree- 
of-freedom model. Next, simplifying assumptions are discussed and the model is reduced 
to 4 degrees of freedom. The propagation of the aircraft on the surface of the Earth is 
discussed along with all the necessary reference frames to support all current conventions 
and interfaces. Modeling the effects of wind is discussed. Next, the flight control system 
necessary to fly the aircraft through the fundamental maneuvers of climb, descent, 
turning to a heading, and speed changes is discussed. The control theory necessary to 
implement the flight control system is discussed in detail. Next, the aircraft guidance 
system is discussed. The guidance system enables the aircraft to capture and follow 
routes. Different types of route capture methods are discussed such as the automatic and 
vectored route capture methods. Navigation systems and their error models are discussed 
next. This discussion includes the modeling of VOR/DME, ILS, and GPS navigation. 
With the completion of guidance and navigation, the algorithms that meet speed and 
altitude constraints at fixes are discussed. Pilot modeling and pilot flight technical error 
are also included. Finally, the document concludes with a section on verification and 
validation, the process by which the various features of the simulation are tested and 
verified.  
 

1.3 Organization 
Since much of the analysis is of a highly technical nature, an effort has been made to 
organize the document so that specific topics are easy to access. This is done to avoid the 
need to read the entire document to find a specific point. The document is organized into 
13 sections, each of which is now discussed briefly.  
 
• Section 2 provides a detailed analysis of the aircraft equations of motion. The 4 

degree-of-freedom aircraft model is derived from first principles. All trajectory 
propagation material is also covered. The numerical integration techniques are also 
discussed.   

• Section 3 develops a linear model of the longitudinal dynamics and analyzes the 
longitudinal modal properties of the system. Transfer function analysis of the 
longitudinal dynamics is also performed  

• Section 4 provides a detailed analysis of the non-feedback control aspects of the 
longitudinal control system. There is non-feedback control related logic that 
determines which feedback control algorithm should be used at a given time. Non-
feedback control related logic also manages how the inputs are given to the feedback 
control algorithms. 
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• Section 5 deals with the design of the feedback control algorithms which are the 
algorithms which stabilize the aircraft and drive it to the desired state. There are 
different feedback control algorithms for different flight phases; each of these control 
systems is discussed, and a strategy for calculating the required gains is developed. 

• Section 6 documents the decision process which led to the final conclusion that gain 
scheduling would not be necessary. By carefully choosing the reference flight 
condition, it is possible to choose one set of gains which will work for the aircraft’s 
entire flight envelope. 

• Section 7  discusses the lateral directional control system  
• Section 8 discusses the lateral guidance system. The purpose of the lateral guidance 

system is to steer the aircraft to follow routes or other simulation pilot commands. 
• Section 9 discusses the navigation systems and navigation error modeling The 

purpose of navigation error modeling is to model the variances which occur in 
aircraft flight paths as a result of imperfect navigation information.  

•  Section 10 discusses the logic used to make aircraft meet speed and altitude 
constraints at fixes. 

• Section 11 documents the flight technical error algorithms which model the inability 
of the pilot or autopilot to steer the aircraft perfectly along the desired course.  

• Section 12 documents the terminal flight phases which are take-off and landing.  
• Section 13 describes verification and validation of the aircraft simulation. The section 

starts with testing of climbs, descents, and speed changes and continues with testing 
of the guidance algorithms. The navigation error and flight technical error are also 
tested. Finally, the terminal flight phases are tested.  
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2. The Aircraft Equations of Motion 
The purpose of this section is to provide a theoretical foundation for the aircraft equations 
of motion that are used in the TGF aircraft simulation.  The foundation will start with the 
definition of reference frames.  Once the reference frames have been defined, we will 
derive the equations of motion for the full six-degree-of-freedom (DOF) model.  Then, 
we will apply several assumptions to the equations of motion to reduce the 6-DOF model 
to a 4-DOF model.   

2.1  The Definition of the Body Frame and the Inertial Frame 
As discussed in Nelson [N89], the two major reference frames used in the derivation of 
the aircraft equations of motion are the aircraft body fixed reference frame (denoted with 
a b subscript) and the inertial reference frame (denoted with an i subscript).  The aircraft 
body frame’s origin is fixed at the aircraft’s center of gravity.  The body frame has its x -
axis aligned with the nose of the aircraft so that the aircraft’s nose points in the positive 

 direction.  The positive y  direction points out along the aircraft’s starboard wing. The 

$b

$xb

$

$b

zb axis points down to complete a right handed coordinate frame. Figure 2.1 shows the 
body fixed reference frame.    
 
 
 
 

x̂bŷb

ẑb  
 

Figure 2.1. The body fixed reference frame aligned with an aircraft 

 
The inertial reference frame is fixed on a point on the Earth’s surface and is aligned so 
that the positive  axis points in the true North direction and the positive y  axis points 
in the true East Direction.  The 

$xi $i

$zi  axis points down and is normal to the surface of the 
Earth.  The body reference frame can assume any orientation with respect to the inertial 
frame. Figure 2.2 illustrates the relationship between the body and inertial reference 
frames. 
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x̂iŷi

ẑi

x̂b

ŷb

ẑb

 
Figure 2.2.   The relationship between body and inertial reference frames 

 
The orientation of the body frame with respect to the inertial frame is usually described 
by an Euler angle (3-2-1) sequence of rotations.  The ordering of the rotations is critical 
to the orientation of the body frame.  It is difficult to visualize the actual sequence of 
rotations in a single drawing, so the sequence is illustrated with 3 separate drawings.  
Figure 2.3 shows the Euler sequence of rotations which is used to quantify the aircraft’s 
orientation.  

x̂1

ẑ1

x̂2

ẑ2

θŷ2ŷ1,

x̂1

ŷ1

ψ

ẑ1,

x̂i

ŷi

ẑi

ẑ2

ŷ
2

ẑb

ŷb

φ

x̂2 x̂b,

 
Figure 2.3.  The 3-2-1 Euler sequence of rotations used to quantify the aircraft's orientation 

 
 
The first rotation is through the angle ψ  about the $zi  axis to an intermediate reference 
frame which is arbitrarily denoted with a ‘1’ subscript.  The second rotation is through 
the angle θ  about the y  axis to another intermediate reference frame which is denoted 
with a ‘2’ subscript.  The final rotation is through the angle 

$1
φ  about the  axis to the 

body frame.  The angles 
$x1

ψ , θ , and φ  are referred to as the heading, pitch, and roll angles, 
respectively.  
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The conversion between the inertial frame and the body frame of the aircraft is 
accomplished using direction cosine matrices. The first cosine matrix establishes the 
relationship between the inertial frame and the first intermediate reference frame.  
Equations (2.1), (2.2), and (2.3) quantify the relationship between the individual 
rotations.  The nomenclature Cθ  and Sθ  are simplified notation for cosθ  and sinθ .  This 
is done for all trigonometric manipulations to simplify the ultimate expression. From the 
rotation sequence shown in Figure 2.3, one can write the following direction cosine 
matrices shown in Equations (2.1) through (2.3). 
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The product of these three direction cosine matrices results in the complete conversion 
between the inertial frame and the body frame as shown in Equation (2.5).   
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The inverse of Equation (2.5) is shown in Equation (2.6). 
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2.2 Definition of Flight Mechanics Nomenclature 
Next, certain flight mechanics nomenclature must be defined.  This nomenclature 
consists of the various linear and angular velocities associated with the motion of the 
aircraft as well as the forces and moments which are applied.  Figure 2.4 provides an 
illustration of the nomenclature as it applies to the aircraft.  
 
 

x̂bŷb

ẑb

pL,

qM,

rN,

Z,w

X,u
,vY

 
Figure 2.4. The forces, moments, velocity components and angular rates of an aircraft 

 

Table 2.1 summarizes the nomenclature definition so that the mathematical symbols can 
be associated with the proper terminology. The reader will note that the term L is used to 
notate the rolling moment. Further along in the text, L will also be used for lift. This is an 
unfortunate consequence of the merging of two engineering disciplines, dynamics and 
control and aerodynamics. To avoid confusion, this document will notate the rolling 
moment using L  instead of L  which is reserved for lift.  

 
Table 2.1.  Definition of  flight mechanics nomenclature 

 Roll Axis  $xb Pitch Axis y   $b Yaw Axis $zb  
Angular rates p q r 
Velocity components u v w 
Aerodynamic Force Components X Y Z 
Aerodynamic Moment Components L  M N 
Moments of Inertia Ix  Iy  Iz  
Products of Inertia Iyz  Ixz  Ixy  
 
It is important to note that the forces defined in Table 2.1 are aligned with the body 
frame.  These forces do not directly coincide with the more commonly known 
aerodynamic forces of lift and drag.  The forces of lift and drag are defined with respect 
to another reference frame, the wind frame, discussed in the following section. 
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2.3 The Wind and Stability Reference Frames 
We need to derive two additional reference frames to resolve the relationship between the 
commonly known aerodynamic forces of lift and drag and the body forces of the 6-DOF 
model. These reference frames are the stability frame and the wind frame as defined by 
Stevens [SL92]. These reference frames characterize the relationship of the angle of 
attack, α , and the side-slip angle, β , to the body frame velocities.  These aerodynamic 
angles are defined by means of coordinate rotations. The first rotation, about the  axis, 
defines the stability frame and the angle is the angle of attack, 

$yb

α . With no sideslip, α  is 
the angle between the aircraft x  axis and the aircraft velocity vector relative to the 
surrounding air mass.  The angle of attack is positive if the rotation about the y  axis was 
negative.  This ‘backwards’ definition is the unfortunate result of merging the disciplines 
of aerodynamics and classical kinematics.  

$b

$
b

 
The second rotation leads to the wind frame, and the side-slip angle is the angle between 
the stability frame and the wind frame. An aircraft has sideslip if its velocity vector 
relative to the air mass is not in the plane defined by x -$b $zb .  The rotation is about the z-
axis of the stability frame, $zst , and β  is defined as positive if the rotation about the $zst  
axis is positive.  The wind frame’s x-axis, x , is aligned with the aircraft’s velocity 
vector which is the vector sum of the body frame velocities, 

$w

ˆ ˆ ˆb bux vy wzb= + +V .  The 
other axes, y and $w $zw , are orthogonal to x  and to each other.  Figure 2.5 illustrates the 
orientation of the x-axes of the stability and wind frames with respect to the body frame. 

$w

  

x̂b

ŷb

ẑb

x̂st

x̂w

α

β

Va

 
Figure 2.5.   Illustration of the stability and wind coordinate systems 

 
Equations (2.7) - (2.9) show the direction cosine matrices which define the 
transformations between the coordinate frames.  
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Using the direction cosine matrices, we can derive expressions for the angles, α  and β .  
We start with the definition of true airspeed. The true airspeed of an aircraft, Va , is 
defined as the magnitude of the aircraft’s velocity relative to the air mass surrounding the 
aircraft. By definition, the only component of this velocity is along the x  axis of the 
wind frame.  That is to say the total aircraft velocity is aligned with the x  axis.  Written 
in equation form, .  Using the inverse of the direction cosine matrix in equation 
(2.9), we can define the body frame velocities in terms of the true airspeed and the angles 
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The three resulting scalar equations are shown below in Equations (2.11)-(2.13). 
 

u V C Ca= β α       (2.11) 
 

v V Sa= β       (2.12) 
 

w V C Sa= β α       (2.13) 
 
Rearranging Equation (2.12) gives us an expression for side-slip.   
 

β = −sin 1 v

Va

      (2.14) 

 
Taking the quotient of w/u, we can derive an expression for angle of attack as shown in 
Equations (2.15)-(2.16). 
  

w

u

V C S

V C C

S

C
a

a

= = =β α

β α

α

α

αtan     (2.15) 
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α = −tan 1 w

u

w

u
≈      (2.16) 

 
Assuming that the angle of attack is small, it can be approximated as just the ratio w/u.  
Often, this expression is used to substitute α  for w.   
 
Using the wind reference frame, we can resolve the relationship between the commonly 
known aerodynamic forces of lift, drag and thrust (L, D, and T, respectively), and the 
body forces of the 6 DOF model.  We can see from the direction cosine matrix (2.9) that 
if we model the aerodynamic forces on an aircraft in terms of lift, drag, and thrust, 
equations (2.17) through (2.21) are expressions for X, Y, and Z forces in the body frame. 
The aircraft weight is not included because it is not an aerodynamic force.  
 

ˆ ˆa b wTx Lz Dx= − −∑F ˆw     (2.17) 
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X T DC C LS= − +β α α       (2.19) 

 
Y DS= − β        (2.20) 

 
Z DC S LC= − −β α α       (2.21) 

 
Note that the actual forces and moments of the full 6 DOF model include much more than 
simply lift, drag, and thrust.  Unsteady aerodynamics plays a large role in the 
determination of the complete force and moment model.  
 
Before continuing, there is one more term which must be formally defined.  This term is 
the flight path angle.  The flight path angle, γ a , is the angle that the x  axis makes with 
the x-y plane of the inertial frame (horizontal).  This angle characterizes the vertical 
flight path of the aircraft and is formally defined in Equation (2.22). 

$w

 
γ α β θ φ β φ α β θa C C S S S C S C C= − +−sin 1 de i j   (2.22) 

 
The ‘a’ subscript on the flight path angle denotes that it is an aerodynamic flight path 
angle. This is to say that it is the aircraft’s flight path angle relative to the air mass. The 
aircraft’s flight path angle relative to the ground is generally different because of the 
influence of winds. 
 
We can see from Equation (2.22) that if both α  and β  are zero, the Euler angle θ  reduces 
to γ a . 
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2.4 The Derivation of the Six Degree of Freedom Equations of Motion 
Once the reference frames and nomenclature are defined, the derivation of the equations 
of motion is straightforward.  The linear equations of motion are derived by summing the 
forces to the time rate of change of linear momentum (mass acceleration× ).  The 
acceleration of the aircraft’s velocity is determined using the basic kinematic equation 
which states that the total acceleration of the aircraft with respect to the inertial frame is 
equal to the derivative of the velocity vector with respect to the body frame plus the cross 
product of the angular velocity between the inertial and body frames and the velocity 
vector.  The basic kinematic equation is shown in Equation (2.23) 
 

i
b

d
dt t

∂ = = + ∂ 
V Va ω V×      (2.23) 

where  
 
• ai is the acceleration of the aircraft with respect to the inertial frame 

• 
d
dt
V  is the total time derivative of the velocity vector 

• 
bt

∂ 
 ∂ 

V  is the derivative of the velocity vector as seen in the body frame 

• ω is the angular velocity of the body frame relative to the inertial 
frame: ˆ ˆ ˆb b bpx qy rz= + +ω   

• V is the velocity vector in the body frame: ˆ ˆ ˆb bux vy wzb= + +V . 
 
The expression for the aircraft’s acceleration is shown in Equation (2.24) and simplified 
in Equation (2.25). 
 

( ) (ˆ ˆ ˆ ˆ ˆ ˆˆ ˆb b b b b b b b
d ux vy wz px qy rz ux vy wz
dt

= + + + + + × + +
V

& & & )ˆb   (2.24) 

 

( ) ( ) (ˆ ˆ ˆb b
d u qw rv x v ru pw y w pv qu z
dt

= + − + + − + + −
V

& & & ) b   (2.25) 

 
To complete the equations of motion, we must equate the acceleration terms to the 
applied forces according to Newton’s second law (F=ma). Table 2.1 summarizes the 
aerodynamic forces applied to the aircraft; however, the aircraft weight must also be 
considered.  The aircraft’s weight always acts downward in the $zi direction.  Using the 
direction cosine matrix, the aircraft’s weight (mg) can be represented in body frame 
coordinates as shown in Equation (2.26) 
 
 

mgz mgS x mgC S y mgC C zi b b$ $ $ $= − b+ +θ θ φ θ φ    (2.26) 
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where 
• m  is the aircraft’s mass 
• g  is the gravitational acceleration.  

 
 
Summing the forces and equating the force terms yields the final expression as shown in 
Equation (2.27). 
 

X mgS x Y mgC S y Z mgC C z

m u qw rv x m v ru pw y m w pv qu z

b b b

b b

− + + + +

= + − + + − + + −

θ θ φ θ φb g d i d i
a f a f a f

$ $ $

& $ & $ & b$
 (2.27) 

 
Equation (2.27) can be broken down into its individual components to yield the 3 force 
equations of motion as shown in Equations (2.28)-(2.30). 
 
 

X mgS m u qw rv− = + −θ &a f     (2.28) 
 

Y mgC S m v ru pw+ = + −θ φ &a f     (2.29) 
 

Z mgC C m w pv qu+ = + −θ φ &a f    (2.30) 
 
 

The moment equations are equal to the time rate of change of angular momentum.  The 
angular momentum of the aircraft is equal to the inertia matrix multiplied by the angular 
velocities. The expression for angular momentum is shown in Equation (2.31) where the 
symbol H is used to denote the angular momentum.   
 

H

H

H

I I

I

I I

px

qy

rz

x

y

z

x xz

y

zx z

b

b

b

L

N
MMM

O

Q
PPP

=
−

−

L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP

0

0 0

0

$

$

$

    (2.31) 

 
Because aircraft are symmetric, two products of inertia, Iyz  and Ixy , are zero and therefore 
are eliminated from the angular momentum expression.  Equation (2.31) can be expanded 
to three scalar equations as shown in Equations (2.32)-(2.34). 

 
H I px I rzx x b xz= b−$ $       (2.32) 

 
H I qyy y= $b        (2.33) 

 
H I px I rzz zx b z= − b+$ $       (2.34) 
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The time rate of change of each of these expressions is calculated using the ‘Basic 
Kinematic Equation’ of the form shown in Equation (2.35). 
 

b

d
dt t

∂ = + × ∂ 
H H ω H      (2.35) 

 
When the kinematic expressions are summed to their respective moments, the three 
moment equations are derived.  The three moment equations are shown in Equations 
(2.36)-(2.38). For convenience Table 2.2 summarizes the fundamental kinematic and 
dynamic equations of motion. 
 
 

L I p I r pq qr I Ix xz z= − + + −& &a f c hy

h

r

    (2.36) 
 

M I q rp I I I p ry x z xz= + − + −& b g c 2 2     (2.37) 
 

N I p I r pq I I I qxz z y x xz= − + + − +& & c h     (2.38) 
 
 
So far we have developed the full 6-DOF equations of motion which are quite involved.  
The next step in developing a 6-DOF model, well beyond the scope of this discussion, 
would be to derive expressions for the forces and moments which act on the aircraft. For 
a complete discussion, refer to Nelson [N89]. The forces and moments which are used in 
the 6 DOF model are quite different from the simplified subset presented in Equations 
(2.19) through (2.21).  The true forces and moments are complicated expressions which 
require estimates of unsteady aerodynamic data to handle properly. Our next task is to 
simplify the 6 DOF equations of motion to 4 DOF equations using some simplifying 
assumptions.  
 
However, first we will briefly discuss the modal characteristics of the 6 DOF model so 
we better understand which characteristics are most likely going to influence trajectory 
propagation.  

2.5 The modal Properties of the Six Degree of Freedom Model 
Before simplifying the equations of motion to 4-DOF, it is useful to discuss the five 
modes of motion associated with the 6-DOF model. Three of the modes are second order 
and two of the modes are first order making up an 8th order system.  These modes are: 
 
• Short Period (Longitudinal plane) 
• Phugoid   (Longitudinal plane) 
• Dutch Roll  (Lateral-Directional plane) 
• Roll (Lateral-Directional plane) 
• Spiral (Lateral-Directional plane). 
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Table 2.2.  Summary of kinematic and dynamic equations of motion 

Grouping  Equations 
 
 

Force Equations 

 
X mgS m u qw rv− = + −θ &a f                     (2.28)  
Y mgC S m v ru pw+ = + −θ φ &a f
Z mgC C m w pv qu

                 (2.29)  
+ = + −θ φ &a f                (2.30)  

 
 

Moment Equations 
 

L I p I r pq qr I Ix xz z= − + + −& &a f c hy
h
r

             (2.36)  

M I q rp I I I p ry x z xz= + − + −& b g c 2 2            (2.37)  
N I p I r pq I I I qxz z y x xz= − + + − +& & c h           (2.38)  

  
Body Angular Velocities in 
terms of Euler angles and 

Euler rates 
 

 
p S= −& &φ ψ θ                                                (2.39)  
q C C S= +& &θ ψφ θ  φ                                      (2.40)   

Sr C C= −& &ψ θθ φ   φ                                      (2.41)  

 
Euler rates in terms of Euler 

angles and body angular 
velocities 

 

 
&θ φ φ= −qC rS                                              (2.42) 
&φ φ θ φ θ= + +p qS T rC T                                 (2.43) 
& secψ θφ θ= +qS rCd i                                  (2.44) 

  
 
The longitudinal dynamics control the forward speed and altitude of the aircraft.  There 
are two second-order oscillatory modes comprising the longitudinal dynamics.  These 
modes are referred to as the short period and the Phugoid mode. 
 
The lateral-directional dynamics consist of one second-order mode and two first-order 
modes.  These modes control the turning dynamics of the aircraft within the lateral plane.  
 

2.5.1 The Short Period Mode 
The short period mode is named because it is the faster of the two modes.  It is the mode 
which defines the aircraft’s pitching about its center of gravity.  The short period mode 
controls the dynamics between elevator deflection and the aircraft’s resulting lift 
coefficient.  Generally, the short period mode is over ten times faster than the Phugoid 
mode. 

2.5.2 The Phugoid Mode 
The Phugoid mode is the slower of the two longitudinal modes.  We can think of the 
Phugoid mode as a gradual interchange between potential and kinetic energy about some 
equilibrium altitude and airspeed.  The Phugoid mode is characterized by changes in 
pitch attitude, altitude, and velocity at a nearly constant lift coefficient.  Usually, the 
Phugoid is over ten times slower than the short period mode and therefore the Phugoid 

-15- 



will have the dominant influence over the aircraft’s trajectory. This is illustrated in 
Figure 2.7. 
  

 
 

Figure 2.6.  Illustration of the Short Period mode causing oscillations about the aircraft’s center 
of gravity 

 
 

 
 

Figure 2.7.  Illustration of the Phugoid mode 
   

2.5.3 The Dutch Roll Mode 
The Dutch Roll mode is the only oscillatory mode of the lateral directional dynamics and 
is a combination of yawing and rolling oscillations.  The Dutch Roll gets its name from 
its resemblance to the weaving motion of an ice skater.  The Dutch Roll mode is mostly 
an annoyance to the pilot and passengers. The pilot can easily damp out the motion of the 
Dutch roll. The Dutch roll is illustrated in Figure 2.8. 
 

 
 

Figure 2.8.  Illustration of the Dutch Roll mode 

2.5.4 The Roll Mode 
The roll mode characterizes how fast an aircraft can achieve a steady state roll rate after 
an aileron deflection.  It is a first-order mode and therefore does not oscillate.  The roll 
mode can influence the trajectory of an aircraft by causing a delay between the time a 
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turn is commanded and when a steady state turn rate is achieved. The Roll mode is 
illustrated in Figure 2.9. 
  

 
Figure 2.9.  Illustration of the Roll mode 

 

2.5.5 The Spiral Mode 
The spiral mode characterizes an aircraft’s spiral stability about the vertical axis. This 
mode controls whether or not an aircraft returns to level flight after a small perturbation 
in roll angle.  When this mode is unstable, the aircraft will have a tendency to depart from 
level flight and enter a spiral dive. 

 
 

  Figure 2.10. Illustration of an unstable Spiral mode 
 
 
If the mode is stable, the aircraft remains in level flight.  Usually the mode is stable.  
Even if the mode is not stable, the pilot will compensate to maintain straight and level 
flight. 
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The next section shows how the 6-DOF model is simplified to yield a model with four 
degrees of freedom. 

2.6 Simplifying the Equations of Motion to Four Degrees of Freedom 
The first step to simplifying the 6-DOF equations of motion is to make two assumptions 
about the aircraft in flight.  These assumptions are that: 
 
1. The aircraft’s pitch dynamics, characterized by the short period mode, are fast enough 

to be assumed instantaneous. 
2. The pilot maintains ‘coordinated flight’.   
 
We first concentrate on the implications of coordinated flight.  Constraining the aircraft 
to coordinated flight implies that the side-slip angle is always zero.  This in turn implies 
that there is never any side velocity, v, any side-force Y, or any yawing moment N.  This 
reduces Equation (2.29), the side force equation, to Equation (2.45).  The reduced 
Equation (2.45) is no longer a differential equation.  Furthermore, the yaw rate 
derivative, r , is neglected reducing the yawing moment differential equation to an 
algebraic expression as shown in Equation (2.46). The rolling moment derivative is 
removed by the substitution of the rolling moment equation in for .  

&

&p
 

gC S ru pwθ φ = −a f      (2.45) 
 

0 = −
+ − −

+ − +I
L I pq qr I I

I
pq I I I qrxz

xz z y

x
y x xz

a f c h c h   (2.46) 

 
Similarly, the side velocity, v, drops out of the other force equations as well.  Equations 
(2.47) and (2.48) show the modified force equations. 
 

X mgS m u qw− = +θ &a f     (2.47) 
 

Z mgC C m w qu+ = −θ φ &a f      (2.48) 
 
Now, concentrate on the first assumption that the aircraft’s pitch dynamics are fast 
enough to be neglected.  This implies that the aircraft is able to command an angle of 
attack instantaneously.  Therefore, we neglect the derivatives, w  and q .  The net effect is 
that the Z force equation and the pitching moment equation are reduced to algebraic 
expressions. 

& &

 
Z mgC C m qu+ = −θ φ a f     (2.49) 
M rp I I I p rx z xz= − + −b g c 2 2 h    (2.50) 

 
The terms q  and α  can be solved explicitly by rearranging Equations (2.49) and (2.50). 
First, q is solved in Equation (2.51). 
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q
Z mgC C

mu
=

− − θ φ      (2.51) 

 
To solve for angle of attack, the pitching moment, M, must be expanded into its 
individual terms as shown in Equation (2.52).  This is merely a formality because we will 
shortly show how we can remove angle of attack entirely. 
 

M M M M rp I I I p ro e x z xze
= + + = − + −α δα δ b g c h2 2   (2.52) 

The terms in (2.52) are: 
• Mo  : The zero angle of attack pitching moment 
• Mα  : A derivative relating pitching moment changes to changes in angle of attack 
• M

eδ : A derivative relating the effect of elevator deflection on angle of attack. 
 
Solving for angle of attack yields Equation (2.53). 
 

α
δδ

α

=
− + − − −rp I I I p r M M

M
x z xz o e
b g c h2 2

e    (2.53) 

 
Therefore, the angle of attack is an algebraic function of the elevator deflection, roll rate, 
and yaw rate. The terms c h and rp are second order effects and can be neglected. 
Therefore, the angle of attack is very nearly a function of the elevator deflection 
exclusively.  This implies that the lift coefficient, 

p r2 2−

CL , also is very nearly an exclusive 
function of the elevator deflection as shown in Equations (2.54) and (2.55).    
 

C C C CL L L Lo e e= + +
α δ
α δ     (2.54) 

 

C C C
M M

M
CL L L

o e

Lo

e

e
= + e

− −F
HG

I
KJ +α δ

δ

α

δ
δ    (2.55) 

 
where 
• CLo

 is the zero angle of attack lift coefficient 
• CLα

 is the lift curve slope with respect to angle of attack 
• CL eδ

 is the effect of elevator deflection on lift coefficient. 
 
Although the angle of attack has been removed from our equations, we can still calculate 
it for animation purposes. Furthermore, the elevator deflection can be completely 
bypassed in favor of the aircraft’s lift coefficient as the primary longitudinal control 
input.  This is convenient because the terms relating lift coefficient, angle of attack and 
elevator deflection are not provided in commonly available aircraft models.   
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At this point, we assume that the angle of attack is small. This assumption combined with 
the previous assumption of coordinated flight implies that the wind and body frames are 
very nearly aligned with each other. The alignment of the wind and body frames implies 
the following: 
 
1. True airspeed, Va , and u  are aligned.  Therefore Va  can be substituted for u in the 

differential equations.    
2. The lift force, defined as pointing in the  − $zw  direction, is now aligned with the Z  

force in Equation (2.30).   
3. The drag force, defined as pointing in the − $xw , is aligned with the Thrust, defined as 

being aligned with the x  axis. $b

4. The Euler angle θ  reduces to γ a , the flight path angle. 
 
These simplifications greatly reduce the equations of motion.  Equations (2.56) through 
(2.58) show what remains of our differential equations.  
 

T D mgS mVa− − =θ
&      (2.56) 

 

q
L mgC C

mVa

=
− θ φ      (2.57) 

 
L I p I pq qr I Ix xz z= − + −& a f c hy     (2.58) 

 
These equations need to be rearranged into a useful form.  We start with Equation (2.56) 
which can easily be rearranged as an expression for true airspeed as shown in Equation 
(2.59).  
 

&V
T D

m
gSa =

−
− θ      (2.59) 

 
Rearranging Equation (2.57) into an expression for flight path angle takes more steps. We 
start by relating the pitch rate, q, to the Euler angle θ  by using the relations from Table 
2.2 yielding Equation (2.60).   
 

& &θ ψθ φ

φ

θ φ

φ

=
−

−
L mgC C

mV C

C S

Ca

     (2.60) 

 
Using Table 2.2 again, we can substitute for yaw rate, r, in terms of Euler angles in 
Equation (2.45) yielding Equation (2.61).  
 

& &ψ θθ φ

θ φ

φ

θ φ

= +
gC S

V C C

S

C Ca

     (2.61) 
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Combining equations (2.60)  and (2.61) result in the final expressions for &θ  and &ψ  as 
shown in equations (2.62) and (2.63). 

       
 

&θ φ θ=
−LC mgC

mVa

     (2.62) 

 

  &ψ φ

θ

=
LS

mV Ca

      (2.63) 

 
Using the fact that the flight path angle and the pitch angle are identical for this model, 
we substitute γ a  for θ .  This protects us from confusion that might arise as a result of our 
simplified Euler angle expressions. 
 
 

&γ φ
a

a

γLC mgC

mV
a=

−
     (2.64) 

 

&ψ φ

γ

=
LS

mV Ca a

      (2.65) 

 
The final equation of motion to manipulate is the rolling moment equation.  This equation 
governs the rate at which an aircraft can establish a bank angle.  The rolling moment 
equation as written is a function of roll and pitch rates and the moments of inertia.  
 

L I p I pq qr I Ix xz z= − + −& a f c hy      (2.66) 
 

We choose to neglect the higher order terms and reduce the rolling moment equation to 
its linear form of L Ix= &p .  We will use standard stability and control derivatives to 
define the rolling moment as shown in Equation (2.67). 
 

L p L I pp aa x+ =δ δ &      (2.68) 
where 
 
• Lp  is the rolling moment derivative with respect to roll rate 
• L

aδ is the rolling moment derivative with respect to aileron deflection 
• δ a  is the aileron deflection. 
 
We will take one further step to redefine our derivatives to include 1 / Ix  so that we can 
write our differential equation in first order form. 
 

&p L p Lp a a= + δ δ      (2.69) 
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Table 2.3.  The equations of motion for the 4-DOF model 

Name Equation 
 

True Airspeed Equation 
 

 
&V

T D

m
gSa a

=
−

− γ                 (2.59) 

 
 

The Flight Path Angle 
Equation 

 

&γ φ
a

a

γLC mgC

mV
a=

−
                 (2.64) 

 
 

The Heading Equation &ψ φ

γ

=
LS

mV Ca a

                         (2.65) 

 
The Roll Rate Equation 

 
&p L p Lp a a= + δ δ                    (2.69) 

 
 
Since we do not have much data for Lp  and L

aδ , we will have to use engineering 
judgment as to the best values for a specific aircraft.  These numbers will be terms that 
must be ‘tweakable’ so that the user can tune them to suit. The final form of the equations 
of motion, without wind effects, is shown in Table 2.3. An alternative derivation of the 
equations of motion may be found in Mukai [Mu92]. 
 

2.7 The Addition of Winds 
The addition of winds into the system is done by creating yet another reference frame.  
This frame, the air mass frame, is inserted in between the inertial frame and the wind and 
body frames. Recall that the wind and body frames are equivalent for our simplified 
model.  The air mass frame’s orientation is aligned with the inertial frame, but moves at a 
constant velocity with respect to the inertial frame.  The aircraft’s velocity motion as 
described in the previous sections is now considered to be with respect to the air mass 
frame and not the inertial frame.  Knowing that the aircraft’s velocity is aligned with the  

 axis we can determine the aircraft’s speed relative to the air mass in inertial 
coordinates using Equation (2.70).  
$xw

 
V C C x

V C S y

V S z

C C C S S S C S S C S C

C S C C S S S S C C S S

S S C C C

V x

y

z

a i

a i

a i

a w

w

w

a

a

a

a a a

a a a

a a a

γ ψ

γ ψ

γ

γ ψ φ ψ φ γ ψ φ ψ φ γ ψ

γ ψ φ ψ φ γ ψ φ ψ φ γ ψ

γ φ γ φ γ

$

$

$

$

$

$−

L

N
MMM

O

Q
PPP

=
− + +

+ − +
−

L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP

0

0

 (2.70) 

 
The aircraft’s speed relative to the inertial frame then includes the velocity of the air 
mass which we will write as shown in Equation (2.71) 
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ˆwx i wy iV x V ŷ= +wV        (2.71) 
 

where 
 
 
• Vw  is the air mass velocity with respect to the inertial frame 
• Vwx  is the x component of the air mass velocity aligned with true North 
• Vwy  is the y component of the air mass velocity aligned with true East. 
 
The total aircraft velocity with respect to the inertial frame is then the sum of the air mass 
velocity with respect to the inertial frame and the aircraft’s velocity with respect to the air 
mass. The term Vi is the aircraft’s velocity with respect to the inertial frame or the sum of 
the aircraft’s true airspeed and the wind velocity. 
 

( ) ( )ˆ ˆ ˆ
a ai wx a i wy a i aV V C C x V V C S y V Sγ ψ γ ψ γ= + + + −V

a
zi   (2.72) 

 
The terms in Equation (2.72) can be rewritten as shown in Equation (2.73) to introduce 
the terms Vx , Vy , and h . &

 
ˆ ˆ ˆi x i y iV x V y hzi= + −V &      (2.73) 

 
These terms are defined as follows: 
 
• Vx  is the velocity of the aircraft with respect to the inertial frame in the true North 

direction 
• Vy  is the velocity of the aircraft with respect to the inertial frame in the true East 

direction 
•  is the altitude rate or vertical speed of the aircraft. &h
 
Later, the terms Vx  and Vy  are used when defining the latitude rate and longitude rate of 
the aircraft. Assuming that the winds are constant, Equation (2.72) is sufficient for 
modeling the dynamics.  However, if the winds are not constant, then wind gradient 
terms must be added to the differential equations.  Often, winds vary with altitude.  If this 
is the case, the equations of motion must be re-derived accounting for the variations in 
winds with respect to altitude. The resulting equations of motion including wind terms 
are shown in  
Table 2.4. 
 
The terms Wigf  and Wcgf  are called the in-track gradient factor and the cross-track gradient 
factors respectively.  They are defined as follows: 
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W
dV

dh
S

dV

dh
Cigf

wx wy

a
= −ψ aψ     (2.74) 

 

W
dV

dh
C

dV

dh
Scgf

wx wy

a
= +ψ aψ     (2.75) 

 
 

Table 2.4.  The equations of motion including wind gradients 

Equation Name 
 
 

True Airspeed Equation 

 
 

&V
T D

m
gS W V S Ca iga

= f a a a

−
− −γ γ γ   (2.76)

 
 

Flight Path Angle Equation 
&γ φ γ

γa
a

igf

LC mgC

mV
W Sa

a=
−

+ 2           (2.77)

 
Heading Equation 

 

&ψ φ

γ
γ= −

LS

mV C
W T

a
cgf

a

a
                     (2.78)

 
 

Roll Rate Equation 
 

&p L p Lp a a= + δ δ                               (2.79)
 

  
 
 

2.8 Ellipsoidal Earth Trajectory Propagation Equations 
Once the dynamics of the aircraft have been determined, it is necessary to propagate the 
aircraft’s trajectory on the surface of the Earth.  The equations which characterize this 
motion are derived in three steps. These steps are: 
 
1. Develop a set of reference frames 
2. Develop an elliptic Earth model 
3. Develop the kinematic expressions relating the aircraft’s velocity to changes in 

latitude and longitude. 
 

2.8.1 Elliptic Earth Reference Frames 
There are two major reference frames used for the analysis.  These reference frames are  
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• The Earth Centered Earth Fixed (ECEF). We will use an ‘e’ subscript for brevity of 

notation when referring to ECEF when writing equations.  
• A reference frame on the surface of the earth aligned such that the x-y plane is 

tangent to the surface. This frame is often referred to the North-East-Down (NED) 
frame. We will use an ‘s’ subscript  for ‘surface’ for brevity of notation when writing 
Equations.   

 
The observant reader will notice a difference between the aircraft equations of motion 
and the trajectory propagation equations in the inertial reference frame. Basically, the 
aircraft equations of motion were calculated assuming a flat Earth.  This is normally how 
the aircraft equations of motion are handled.  This implies necessarily that the aircraft 
dynamics, which are directly a result of propagating on an elliptic Earth, are ignored.  
This simplification limits our mathematical model to the flight of aircraft only.  The 
model will not properly handle the flight of sub-orbital craft and spacecraft such as 
intercontinental ballistic missiles, satellites, or the space shuttle.  The model is adequate 
for all vehicles traveling under Mach 3. 
 
For trajectory propagation, since we can not assume a flat Earth, the original inertial 
reference frame, denoted with an ‘i’ subscript, is modified for the elliptic Earth. Thus, we  
align our newly defined ECEF ‘surface’ frame, with the inertial frame ‘i’. The surface 
frame then moves with the aircraft so as to provide a frame which is tangent to the 
Earth’s surface as well as providing the aircraft’s horizontal plane of flight. All velocities 
that were originally defined with respect to the ‘i’ frame, are now taken to be with respect 
to the ‘s’ frame.   
 
Figure 2.11 shows the relationship between the two reference frames on a spherical earth. 
The inertial (ECEF) frame is fixed in the center of the earth with the  axis out the North 
pole. The Plane described by the  and the 

$xe

$ye $ze  passes through the plane of the equator. 
The negative $ze  axis is through zero degrees longitude. The second frame is tangent to 
the surface of the earth and is centered in an object propagating along the Earth's surface. 
It is represented with an 's' subscript for surface. The $zs  axis points downward and is 
normal to the surface of the earth. The x  and y  axes define a plane tangent to the 
surface of the earth. The longitude and latitude angles describe the rotation between the 
two frames. 

$s $s
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ẑe

ẑs
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Figure 2.11. The Earth Centered Earth Fixed (ECEF) reference frame and the surface frame 
 
The orientation of reference frames is chosen so that at zero degrees longitude and 
latitude, the two reference frames coincide.  Furthermore, the surface frame conforms to 
the orientation normally used with aircraft as shown in Figure 2.2. Figure 2.2 shows the 
relationship between the surface frame and the aircraft's body fixed frame. The angular 
rotation between the two frames can be thought of as an Euler sequence of rotation.  The 
ordered rotations are illustrated in  
Figure 2.12. 
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Figure 2.12.  The longitude and latitude rotations 

 
The first rotation is longitude.  Longitude (l) is rotated about the positive x  axis in a 
right handed sense from the 'e' frame to an intermediate frame noted with an 'in'. The 
rotation yields a direction cosine matrix in Equation (2.80). 

$e
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The latitude angle (µ ) is rotated about the positive  axis in a right handed sense from 
the 'in' frame to the surface frame denoted with a 's'. The transformation to the surface 
frame is shown in Equation (2.81). The reader will note that this latitude angle rotation is 
opposite of normal mapping convention. That is to say, an aircraft with a negative 
latitude will be in the Northern hemisphere and an aircraft with a positive latitude will be 
in the Southern hemisphere. This is an unfortunate consequence of merging the two 
disciplines of cartography and aircraft dynamics. The negative latitude angle is used to 
maintain a right handed system of coordinate frames. The software design will be 
required to reverse the sign of the latitude in the simulation. 
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The product of these two matrices is the complete direction cosine matrix between the 
two reference frames. 
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The inverse of the matrix can be calculated as well. 
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2.8.2 The Ellipsoidal Earth Definition 
The real earth is not a perfect sphere but rather ellipsoidal, as the radius at the equator is 
slightly larger than the radius at the poles.  The WGS-84 earth model is an ellipsoidal 
earth model [SL92] as shown in Figure 2.13 where:  
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•  is the equatorial radius which is 2b 092565 107. × ft  (ref. [SL92]) 
•  is the semi-minor axis given by a ba f= −(1 ) where f  is the Earth Flattening 

Parameter .  ( f = 1
298 257. ) 

 
x̂i

yi
^

Re

ẑs-h

zî

x̂i

 
Figure 2.13.  The ellipsoidal Earth model 

 
There are two complications created by the ellipsoidal earth. These are: 
 
• The term Re, the position vector from the center of the earth to a point on the surface, 

does not have a constant magnitude.  (With a spherical Earth 
v
Re is equal to the sea 

level radius) 
• Re is not normal to the surface of the Earth. 
 
The fact that Re is not normal to the surface of the Earth creates the need for two different 
latitude definitions: geocentric and geodetic latitude. 

2.8.3 Geocentric Latitude and Geodetic Latitude 
To aid in the discussion of latitude, consider the drawing in Figure 2.14. The angle 
between 

v
R  and the equatorial plane is called geocentric latitude, e λ . Note that the line Re 

is not normal to the earth's surface. Most maps and other navigational references use 
geodetic latitude, µ , which describes a line normal to the Earth's surface. As can be seen 
in Figure 2.14, geodetic latitude describes a line normal to the Earth's surface that does 
not go through the center of the Earth but rather intersects the equatorial plane at some 
other location. 
 
While each latitude definition has its advantages, our definition of coordinate systems 
requires the use of geodetic latitude because the surface frame is defined such that its $zs  
axis is normal to the surface. Geodetic latitude or some permutation of it must be used for 
reference frame definition. 
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Figure 2.14.  Geodetic and geocentric latitudes 

 

2.8.4 Determining Geocentric Latitude in terms of Geodetic Latitude 
Because geodetic latitude defines the rotation between coordinate systems, a choice is 
made to derive all of the equations in terms of geodetic latitude.  Therefore, a relation 
between geodetic latitude and geocentric latitude must be determined.  Consider the 
representation of geocentric latitude, λ , and geodetic latitude, µ , on Figure 2.15. 
 

yi
^yi

^

x̂i

µλ

Re

x

rl
b

a

l

 
Figure 2.15.  Elliptic Earth terminology 

 
By referring to Figure 2.15 for nomenclature definition, the equation for an ellipse is 
given simply by Equation (2.85). 
 

     x

a

r

b
l

2

2

2

2 1+ =      (2.85) 

and can be expanded to  
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Solving for x in terms of r  leads to  l
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     (2.87) 

From observation we can see that the latitudes are described as  
 

tan λ =
x

rl

  and tan   µ =
x

l
 

where l  is an unknown distance.  Thinking of x as a dependent variable and r  as the 
independent variable, it is possible to take the derivative of the expression for x with 
respect to r  and determine the slope of the ellipse at any given point. 
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     (2.88) 

 
The slope of the line normal to the point on the ellipse is the negative reciprocal of the 
slope of the ellipse, or  
 

    slope     (2.89) 
a a

b
r

a

b
r

normal

l

l

=
−2 2

2
2

2

2

Noticing that the numerator of the expression is equivalent to x (see Equation (2.87)) 
allows us to write Equation (2.90). 
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Observing that  l   allows us to write a

b
rl=

2

2 µ  in terms of the slope 

 
tan µ =

x
a

b
rl

2

2

 

which leads to Equation (2.91), 
 

r
a

b
xl

2

2 tan µ =       (2.91) 

 
and finally Equation (2.92). 
 

a

b

2

2 tan tanµ = λ     (2.92) 

 

2.8.5 Kinematics for an Ellipsoidal Earth 
As we start the derivation for the ellipsoidal earth kinematics, we immediately see a 
difficulty in defining the direction of the vector 

v
R . The vector is neither aligned with an 

axis of the ECEF frame nor the NED ‘s’ frame as seen Figure 2.16. 
e
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Figure 2.16.  The position vector from the center of the Earth to the aircraft 
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Therefore, we choose to define a new reference frame, the geocentric surface frame, 
denoted with a subscript ‘c’, which is defined so that the vector Re points along the − $zc  
axis. The geocentric surface frame is defined as one rotation away from the ‘geodetic’ 
surface frame through an angle ε  about the positive  axis.  Figure 2.17 and Figure 2.18 
characterize graphically the relationship between the ellipsoidal earth and the reference 
frames.  
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ẑc
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Figure 2.17.  Ellipsoidal Earth terminology with the addition of the 'c' frame and the angle ε  

 
The angle ε  is defined as the difference between the geodetic latitude and the geocentric 
latitude as shown in Equation (2.93). The direction cosine matrix relating the surface 
frame and the ‘c’ frame is shown in Equation (2.94). 
 

ε µ λ= −      (2.93)  
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    (2.94) 

 
Using the new reference frame, we can define our position vector Re as  where 
r

ˆe er z= −R c

e is the magnitude of Re. Then the complete position vector from the center of the earth 
to the aircraft can be written in Equation (2.95). 
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Figure 2.18. The rotation between the surface frame and the 'c' frame 

 
ˆe c sr z hẑ= − −R      (2.95)  

 
Using (2.94) to remove ‘c’ frame terms, we can write the position vector completely in 
‘s’ coordinates. 

(
ˆ ˆ ˆ
ˆ ˆ

e s e s s

e s e

r S x r C z hz
r S x r C h z

ε ε

ε ε ) s

= − −

= − +

R
    (2.96) 

We need to take the derivative of the position vector to get an expression for the aircraft’s 
velocity. The derivative is defined in (2.97) where the angular rotation between the ECEF 
(‘e’) frame and the surface frame is defined in (2.98). The altitude, h, is assumed to be 
constant for these calculations. 
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Expanding the cross product term,  
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( ) ( )( ) ( )ˆ ˆ ˆe s e e s er C h x l C r C h r S S y r S zε µ ε ε µµ µ× = − + + + + −ω R && & sε  

 
we end up with  the final expression for velocity in Equation (2.99). 
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We know from previous sections that the velocity of the aircraft in the surface frame is 
represented in two components in the surface frame as shown in Equation (2.100). 

 
ˆx s y sV x V ŷ= +V      (2.100) 

 
We can set the velocity components of Equation (2.100) equal to the expressions of 
(2.99) so that we can eventually solve for the latitude and longitude rates.  
 

V r S r C r C hx e e e= + − +& & &ε ε εε µb gc h     (2.101) 

V l C r C h r S Sy e e= + +&
µ ε εb gd µ i      (2.102) 

 
While Equation (2.99) is a final expression for velocity, it leaves several terms only 
implicitly defined. To integrate (2.99), we need expressions for the terms r , r ,e &e ε , and &ε  in 
terms of l, µ , l and & &µ . We start with an expression for r . Using Figure 2.17 and the 
classic relationship for an ellipse, we can define r  in terms of the geocentric latitude.  

e
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2 1+ =      (2.103) 

 
re cos rlλ =      (2.104) 

 
re sin xλ =      (2.105) 

 
Combining the relations we have Equation(2.106). With some simplification, we can 
solve for r  directly in (2.107). e
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The geocentric latitude, λ , is not a primary angle of concern, so it is convenient to use 
(2.108) as a substitution for λ . 
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λ = µF
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I
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−tan tan1
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     (2.108) 

 
The angle ε  is the difference between the geodetic and geocentric latitudes as shown in 
Equation (2.109) which can be expressed completely in terms of µ  by substituting 
Equation (2.108) into (2.109) as is done in (2.110). 
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Using the chain rule we can establish the time derivative of re. 
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which can be reduced to  
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Similarly, we can take the derivative of λ  with respect to µ . 
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Finally, we can write an expression for &ε  using Equations (2.114) and (2.109). 
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To simplify the final expressions, we choose to make the following substitutions: 
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We can then substitute into Equations (2.101) and (2.102) to obtain expressions for &ε  and 

e in terms of &r &µ . 
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V l C r C h r S Sy e e= + +&
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These expressions can be rearranged in terms of l and & &µ  as shown in Equations (2.121) 
and (2.122).  
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Table 2.5 summarizes the important results from this section. 
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2.8.6 X, Y, Z Data for DIS Criteria 
It is necessary that the ADM aircraft conform to the DIS standard for representing 
aircraft trajectory propagation.  The DIS standard [DIS98] is similar to the ECEF ‘i’ 
frame which we have defined; however, the DIS standard has the z-axis out the North 
pole and the x-axis out the zero degrees longitude line.  The difference between the two 
frames is illustrated in Figure 2.19.  
 
 

Table 2.5.  The Latitude and Longitude Trajectory Propagation Equations 

Grouping Equations 
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The Conversion between the surface frame and the ECEF is accomplished with direction 
cosine matrix multiplication as defined in Equations (2.123) and (2.124), where the 
position vector, Re, is expressed in ECEF coordinates. 
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To get the position vector from ECEF coordinates to DIS coordinates, we use the 
direction cosine matrix in Equation (2.125) as shown in Equation (2.126). 
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Figure 2.19. The ECEF and DIS Coordinate Frames 

 
Using the direction cosine matrix in (2.125) and Equation (2.96), we can write the 
following conversions from the surface frame coordinate system to the DIS coordinate 
frame. 
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For convenience, we will refer to the DIS coordinates as shown in Equations (2.128) 
through (2.130). 
 

X r S S C r C h C CDIS e l e l= + +ε µ ε µb gd     (2.128) 
 

Y r S S S r C h S CDIS e l e l= + +ε µ ε µb gd     (2.129) 
 

Z r S C r C h SDIS e e= − +ε µ ε µb gd      (2.130) 
 

Similarly, the DIS velocities can be derived from Equation (2.99) using the same 
coordinate transformations as used with the DIS position. The final expressions for the 
DIS velocities are shown in Equations (2.131) through (2.133). 
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& & & & &

& & &
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& & & & & & &Z r S r C r C h C r S r C r S SDIS e e e e e e= + − + + − −ε ε ε µ ε ε εε µ ε µb gc h b g µ    (2.133) 

 
The terms r , r ,e &e ε , and &ε  are defined using the same relations developed in Section 2.8.5. 
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2.9 The Derived State Variables  
The equations of motion are referred to as the state equations because they are the 
fundamental equations which govern the aircraft’s motion. Each state equation is named 
for the state variable for which it calculates a derivative.  In our case, we have four state 
variables Va a pγ ψ  which are governed by the equations in Table 2.3. There are 
also other important values which are not state variables but rather functions of the state 
variables. We call these values derived state variables.  There are five important derived 
state variables: 
 

1. VIAS : The indicated Airspeed 
2. M : The Mach number 
3. ψ GT : The ground track heading 
4. VGS : The ground speed 
5. &ψ : The turn rate 
6. f : The fuel flow/burn rate 
7. W : The aircraft weight 
8. : The aircraft altitude h

 
The indicated airspeed is the speed measurement indicated on an Aneroid type airspeed 
indicator which is hooked to an aircraft’s pitot static system.  The airspeed indicator 
measures the difference between the static and ram-air pressures and approximates an 
airspeed from the pressure difference.  The indicated airspeed is not a good estimate of 
the true airspeed. At higher altitudes the difference between indicated and true airspeed 
may be in error by as much as 100 kts.  To simulate the reading on an airspeed indicator, 
Equation (2.134) is used to convert from Mach number to indicated airspeed. 

 
( )1

( 1)* 2
0

2 11 1 1
1 2IAS

o

pV a M
p

γ
γ γ

γγ
γ

−

−

 
   −    = + − +   −       

 

1−   (2.134) 

 
The terms in Equation (2.134) are defined as follows: 
 
• a*: The speed of sound. 
• γ: The ratio of specific heats for air (not to be confused with the flight path 

 angle).  γ = 1.  under normal conditions. 4
• p: The ambient pressure. 
• p0: The sea-level pressure. 
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To convert indicated airspeed to Mach number, requires rearranging Equation (2.134).  
Since this algebraic manipulation is not trivial, only the result is provided here. 
  

1

2 1

*
0

2 11 1
1 2

o IASp VM
p a

γ
γ γ

γγ
γ

−

−

 
       −  = + − +     −         

 

1 1−   (2.135) 

 
The Mach number is the ratio of the true airspeed and the speed of sound as shown in 
Equation (2.136).        

M
V

a
a=
*

      (2.136) 

 
The ground speed and the ground track heading are derived from the velocity terms first 
presented in Equation (2.73).   
 

2
G xV V V= + 2

y      (2.137) 
 

ψ GT
y

x

V

V
=
F
HG
I
KJ

−tan 1      (2.138)   

 
The turn rate of the aircraft is calculated using the heading equation. Equation (2.63) is 
reprinted here for convenience.   
 

&ψ φ

γ

=
LS

mV Ca a

      (2.63) 

 
There are two ‘derived’ state variables which are not merely functions of the integrated 
states.  These values must be integrated; however, we separate them from the formal 
integration of the differential equations because they do not require the rigorous 
integration procedure used to numerically integrate the state equations.  These two 
‘derived’ states are altitude, h , and aircraft weight, W .  The altitude is simply the 
integration of the altitude rate and the aircraft weight is the integration of the fuel burn 
rate.  The method of integration is discussed in the numeric integration section. 
 

2.10 The Airframe Model 
The airframe model is adapted from Seagull Technology’s AMT (Aircraft Modeling 
Tool) which is adapted from [Bo96].  The primary purpose of the airframe model is to 
calculate the aerodynamic forces applied to the aircraft.  These forces are lift and drag as 
defined in Anderson [A89].  
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The lift of the aircraft is calculated using Equation (2.139). 
 

L = qSwCL      (2.139) 
 

The drag of the aircraft is calculated using Equation (2.140).   
 

D = qSwCD      (2.140) 
 

The terms for these equations are as follows: 
 
1. L Lift  
2. D Drag  
3. Sw Wing Reference Area  
4. q Dynamic pressure 
5. CD Drag coefficient  
6. CL Lift coefficient  
 
To calculate the dynamic pressure Equation (2.141). is used.   
 

q a=
1

2
2ρV       (2.141) 

 
where the terms in the equation are defined as follows:  
 
7. ρ air density  
8. Va true airspeed  
 
The air density is obtained from the atmosphere model which is discussed in Section 
2.12.  The lift coefficient is an input which is usually generated by the control laws.  The 
drag coefficient is calculated using Equation (2.142). 
 

( )2
oD D LC C KC= +     (2.142) 

 
where 
 
1. CDo

    The zero lift drag coefficient 
2.       The induced drag coefficient  K
 
The drag polar equation comes from classical incompressible aerodynamics.  The 
compressibility effects of high speed flight are currently neglected. 
 
Each aircraft in the simulation has five flap settings and a spoiler that can be deployed 
when needed. The flap settings are named for their respective flight phases. 
 
• Clean configuration 
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• Initial climb configuration 
• Take off configuration 
• Approach configuration 
• Landing configuration 
 
Each flap setting is described by its own CDo

 and K  pair.  
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Figure 2.20.  Maximum thrust vs altitude for a DC-9/MD80 
 

2.11 The Engine Model 
The engine model is responsible for providing two important parameters to the rest of the 
model.  These parameters are the maximum thrust available and the fuel burn rate. We 
use the AMT data [Bo96] to perform these calculations. The maximum thrust available to 
the aircraft at any given time is a function of the air’s density. Figure 2.20 shows the 
maximum thrust available for a DC-9 aircraft as the altitude is increased.  The AMT data 
represent the air density in terms of pressure altitude. The maximum available thrust is 
computed using Equation (2.143).   
 

T C
h

C
C hT

T
Tc

c

cmax ,

,

,
= − +
F
HG

I
KJ1

2

3
1 2      (2.143) 

 
where: 
 
1.  is altitude  h
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2. Tmax  is the maximum thrust  
 
There are three thrust coefficients which are used.  None of the coefficients have any 
physical meaning or any name other than their symbolic representation.  These 
coefficients are: 
 
1. CTc ,1

;  Used for calculation of  maximum thrust 
2. CTc ,2

;  Used for calculation of  maximum thrust 
3. CTc ,3

;  Used for calculation of  maximum thrust 
 
The fuel burn rate is calculated using the following equations. 
 

η = +
F
HG
I
KJC

V

Cf
a

f
1

2

1      (2.144) 

 
f T= η       (2.145) 

 

f C
h

Cf
f

min = −
F
HG
I
KJ3

4

1      (2.146) 

 
where:  
 
1. η  is the thrust specific fuel consumption 
2. Va  is the true airspeed  
3. T    is the Thrust  
4. f   the fuel flow rate  
5. fmin  is the minimum fuel rate  
6.    is the altitude  h
 
There are four Thrust specific fuel consumption coefficients which comprise the fuel 
burn model. None of the coefficients have any physical meaning or any name other than 
their symbolic representation.  These coefficients are: 
  
1. Cf1

;  Used to calculate thrust specific fuel consumption 
2. Cf2

;  Used to calculate thrust specific fuel consumption 
3. Cf3

;  Used to calculate minimum thrust specific fuel consumption 
4. Cf4

;  Used to calculate minimum thrust specific fuel consumption. 
 

The fuel flow rate is normally calculated using Equations (2.144) and (2.145); however, 
there is a lower bound on the fuel burn which is calculated using Equation (2.146).  If the 
fuel burn calculated using Equations (2.144) and (2.145) is lower than the minimum fuel 
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burn rate, the minimum fuel burn rate is returned as the fuel burn rate.  Figure 2.21 shows 
the fuel burn rate for a DC-9 at maximum thrust for various airspeeds. 
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Figure 2.21.  Fuel Consumption at maximum thrust (both engines) 

2.12 The Standard Day Atmosphere Model 
Since aircraft operate in the Earth’s atmosphere and their lift and drag characteristics 
depend on the properties of that atmosphere, it is essential to be able to define these 
properties.  To do this, the Standard Day Atmosphere model as defined by The ARDC 
Model Atmosphere, 1959 by Minzner, R.A., and Champion, K.S. W., and Pond, H.L. is 
implemented.  The derivation of the governing equations is omitted since they are 
commonly available in Anderson [A89].   
  
There are 2 separate regions to the Earth’s atmosphere which we are concerned with.  
The first region is the gradient region where temperature drops off linearly with altitude.   
The gradient region spans from the Earth’s surface to 36150 ft.  The second is an 
isothermal region where the temperature is constant.  The isothermal region spans from 
36150 ft to 80000 ft.  Figure 2.22 illustrates the temperature variation of the standard 
atmosphere.   
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Figure 2.22.  Temperature vs altitude for the standard day atmosphere 

   
If the altitude is less than 36150 ft, the temperature of the ambient air surrounding the 
aircraft is calculated using Equation (2.147). 
 

T T ahamb sl= −       (2.147) 
 

where 
 
1. Tsl   :    The sea level temperature  
2. Tamb :   The ambient temperature  
3.  :      The altitude  h
4.   :     The temperature lapse rate  a
 
 
If the altitude is 36150 ft or greater, the temperature stays constant.  Therefore the 
ambient temperature above 36150 ft is a constant 389.97 o .  R
 

T T aamb sl= − 36150a ftf     (2.148) 
 
The speed of sound is strictly a function of the ambient air temperature.  It is calculated 
using the thermodynamic relation in Equation (2.149)    
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Figure 2.23.  The speed of sound variation with altitude for the standard day atmosphere 

 
a* RT= γ       (2.149) 

 
where a*  is the speed of sound,  and γ  is the ratio of specific heats for air.  
 

γ =
c

c
p

v

      (2.150) 

where c  is the constant pressure specific heat and c  is the constant volume specific 
heat.  The term  is the ideal gas constant and 

p v

R T  is the absolute ambient air temperature.  
Figure 2.23 shows the relationship between the speed of sound and altitude for a standard 
day. 
 
 
Figure 2.24 illustrates the pressure variation with altitude for the standard day. If the 
aircraft is below 36150 ft, the pressure ratio of the aircraft is calculated using Equation 
(2.151).   
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Figure 2.24.  Pressure variation with altitude for the standard atmosphere 
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aRF
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−

    (2.151) 

 
where 
1. :   The ambient pressure.  pamb

2. p

p
amb

sl

F
HG
I
KJ :  The pressure ratio.   

3. :  Gravitational acceleration. g
4. a:   Temperature lapse rate. 
5. R:   Ideal gas constant. 
 
If the aircraft is above 36150 ft, the pressure ratio of the aircraft is calculated using 
Equation (2.152). 
 

p

p

p

p
eamb

sl sl

g
RT hF

HG
I
KJ =

− −
36150

36150
36150

( )( )
   (2.152) 

 
where 
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1.  :  Pressure at 36150 ft. p36150

2. T36150  :   Temperature at 36150 ft. 
 
The final equation, which calculates density, is valid regardless of the atmospheric 
region.  It is the equation of state. 
 

ρamb
amb

amb

p

RT
=       (2.153) 

where 
1. ρamb :  The ambient density  
 
The relationship between density and altitude is illustrated in Figure 2.25. 
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Figure 2.25. Density variation with altitude for the standard atmosphere 

 

2.13 Integration Techniques 
The TGF simulation as designed requires the real time integration of a series of nonlinear 
differential equations and one linear differential equation, Equation (2.79).  Since 
nonlinear differential equations can not be solved analytically, some type of numerical 
integration method must be employed. There are many techniques available, so it is 
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important to find a technique well suited to the needs of a particular problem. There are 
several items to consider when choosing a numerical algorithm.  These are: 
 
1. Accuracy required. 
2. Frequency of the dynamics to be simulated. 
3. The computational efficiency required. 
4. The stability of the algorithm. 
 
The most demanding integration requirements for the TGF project stem from the Phugoid 
mode of the longitudinal dynamics.  This mode generally has a period of 30 sec which is 
not very fast.  Therefore, a sophisticated numerical algorithm need not be applied.  
Furthermore, the integrations which are not influenced by the Phugoid mode require even 
less computational precision.  For the Phugoid influenced equations, a good second order 
method should suffice.  For the non-Phugoid influenced equations, a first order method is 
quite adequate.  
 

2.13.1  The Second Order Runge-Kutta Method 
 A second order Runge-Kutta method is chosen for those equations which are influenced 
by the Phugoid mode.  This method, is simple and stable.  It is self starting and does not 
require information from previous time steps.  It is slightly more computationally 
expensive than other methods such as an Adams-Bashforth method, but the use of the 
Adams-Bashforth method did not prove as stable as the Runge-Kutta method and 
required a more complex algorithm because it is not self starting. These methods are 
discussed in detail in Hoffman [H92], or any other numerical method text. 
   
The second order Runge-Kutta algorithm is summarized below. Consider a state vector, 
X(k), at time step, k, and, t(k), the time at step, k.  These are the inputs to the numerical 
integrator.     
 

1

2

( )
( )

( )

( )n

x k
x k

k

x k

 
 
 =
 
 
 

X
M

     (2.154) 

It is our objective to update the state vector to the next time step at (k+1).  To do this we 
must first calculate K0, the initial term of the Runge-Kutta integration sequence.  The 
numerical integration routine does not actually do this.  Instead, it uses a series of 
functions of the states and the independent variable, time, as shown in Equation(2.155).  
For our problem, the functions f1 - fn  are the state equations (2.59),  (2.64), and (2.65).  
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The numerical integration routine will take K0 and add it to the original state vector at 
time step (k) and then send the results back to the derivative functions. This results in K1. 
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The final step is to determine, X(k+1). 
 
 

1 1

2 2

11

12

1

( )
( ) 1( 1)

2
( )

n n

o

o

n o

k kx k
k kx k

k

x k k k

                 + = + +                      

X
M M M

    (2.157) 

 
 
The equations which are integrated using the second order Runge-Kutta technique are 
Equations (2.59),  (2.64), and (2.65) or the true airspeed, flight path angle, and the 
heading angle state variable equations. 
 

2.13.2 The First Order Euler Method 
The first order Euler method is arguably the simplest numerical integration routine 
available.  Under most conditions, it is not considered adequate for actual simulation, but 
rather is used only as an instructional example.  However it is very inexpensive 
computationally, and is more than adequate for the very slow changes in altitude, 
position and weight changes occurring in the TGF model.  Using the same X(k)  vector 
defined in (2.154), the next time step, X(k+1), is easily calculated using Equation (2.158).   
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The quantities which are integrated by this method are as follows: 
 
1. Latitude 
2. Longitude 
3. Weight 
4. Altitude 
 

2.13.3 Analytic Integration  
For the one linear differential equation, the roll Equation (2.69), an analytic integration 
method is used.  The equation is integrated and then discretized using the state transition 
matrix and a zero order hold on the inputs.  
 
 

2.14 The Integration of the Roll Equation 
The roll equation is unique in our simulation because it is the only differential equation 
which is linear. Because the equation is linear, no numerical integration technique need 
be applied.  Furthermore, we can perform the loop closures of our lateral directional 
control logic within the analytic solution itself.  The method of solution uses the state 
transition matrix and a zero order hold.  

2.14.1  The open loop roll rate and roll angle equations 
The roll mode is governed by Equation (2.69) which is reprinted below.  It is convenient 
to assign &φ , the derivative of the roll angle, to p, the roll rate.  This yields Equation 
(2.159).  These two equations yield the second order dynamics which characterize an 
aircraft’s roll angle in response to deflection of the ailerons.   
 

&p L p Lp a a= + δ δ     (2.69) 
 

&φ = p       (2.159) 
 
It is necessary to arrange the equations into state space representation as shown in 
Equation (2.161).  
 

&

&
p L p Lp

a
a

φ φ
δδL

NM
O
QP =
L
NM
O
QP
L
NM
O
QP +
L
NM
O
QP

0

1 0 0
    (2.160) 
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We can examine the response of the open loop dynamics to a unit step in aileron 
deflection as shown in Figure 2.26. Predictably, we see the aircraft’s roll rate rise to a 
steady state value and the bank angle rise at a constant rate. This is exactly the response 
one would expect from the open loop roll dynamics.  
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Figure 2.26. The open loop response to an aileron unit step 

 
 
For our aircraft simulation, the control logic will need to command particular aircraft roll 
or bank angle by manipulating the ailerons. The desired system is one where a desired 
roll angle is commanded and the aircraft responds accordingly.  
 

2.14.2 The closed loop system  
To create a closed loop system, we use full state feedback of the form shown in Equation 
(2.161) where Acl is the closed loop A-matrix and Bcl is the closed loop B-matrix.   
 
 

cl

cl

= −
=

A A B
B BK

K
     (2.161) 

 
The matrix nomenclature of Equation (2.161) can be expressed in terms of Equation 
(2.160) as shown in Equation (2.162). 
 

0
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p
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p
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= =  
 
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B BK
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The closed loop state space system is 
 

&

&
p L L k L k p L k L k pp p p des

des

a a a a

φ φ φ
δ δ φ δ δ φL

NM
O
QP =

− −L
NM

O
QP
L
NM
O
QP +
L
NM

O
QP
L
NM
O
QP1 0 0 0
   (2.163) 

 
where  is the desired roll rate and pdes φ des  is the desired roll angle.  We do not actually 
allow a command  so we can eliminate it from Equation (2.163) as shown in Equation 
(2.164). 

pdes

 
&

&
p L L k L k p L kp p

des
a a a

φ φ
φδ δ φ δ φL

NM
O
QP =

− −L
NM

O
QP
L
NM
O
QP +
L
NM
O
QP1 0 0

   (2.164) 

 

2.14.3 Zero Order Hold 
It is our intent to create a zero order hold for the system.  Before continuing, we 
substitute in for the coefficients to simplify the expressions as much as possible.   
 

a L L k

a L k

p a

a

11

12

p= −

= −
δ

δ φ

     (2.165) 

 
The state equations can be expressed in terms of  a  and a  11 12

 
&

&
p a a p L k L k p

a a des

desφ φ φ
δ δL

NM
O
QP =
L
NM

O
QP
L
NM
O
QP +
L
NM

O
QP
L
NM
O
QP

11 12 1 2

1 0 0 0    (2.166) 

 
The equation for the discrete-time system with a zero order hold, as defined by 
Ogata[O70], is shown in Equation (2.167). 
 

0
( 1) ( ) ( )

tt tk e x k e e kτ dτ
∆∆ ∆ −+ = + ∫A A Ax Bu    (2.167) 

 
where x(k+1) is the state vector at the k+1 time step, eA∆t is the state transition matrix, 
x(k) is the state vector at time step k, and u(k) is the input at time step k. 

2.14.4 The State Transition Matrix 

The state transition matrix, eAt, is defined as ( ){ }11 s −− −I AL .  Working through the 

mathematics we have 
 

11 12 11 120
0 1 0 1
s a a s a

s
s s

− −    
− = − =     −    

I A
a 




  (2.168) 
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det
s a a

s
s a s a

− −
−
L
NM

O
QP = − −11 12 2

11 121
   (2.169) 
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− 
 − − − − 

A L     (2.170) 

 

2.14.5 The Inverse Laplace Transform of the State Transition Matrix 
Again, lets redefine some of our coefficients so that the mathematics is easier.   
 

ω
ζω

n

n

a

a

2
12

112

= −

= −
     (2.171) 

  
The state transition matrix is nearly complete except for the transition between the 
Laplace and time domains.  
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  (2.172) 

 
 
Expanding terms to allow the conversion between the Laplace and the time domain, we 
have 
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 (2.173) 

 
Notice that there are two distinct forms.  From Laplace Transform tables we know the 
form of the solution as shown in Equation (2.174).  
 

( )2
2 2 2

1 sin 1
2 1

nt
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n n

s e
s s

ζω tω ζ
ζω ω ζ

− 
φ= − + + − 

-1L − −  (2.174) 

where 
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φ
ζ
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−−tan 1
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        (2.175) 

 
and 
 

2
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e
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ζωω ω tω ζ
ζω ω ζ

− 
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The final conversion to the time domain is shown in Equation (2.177).  
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(2.177) 
 

2.14.6 The Inverse of the State Transition Matrix 
We need to calculate the inverse of the state transition matrix in the time domain.  Theory 
states that one property of the state transition matrix is Φ Φ− = −1( ) ( )t t . Therefore, the 
inverse is calculated simply by reversing the sign on all of the t’s as shown in Equation 
(2.178). 
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(2.178) 
 

2.14.7 The Integration of the Zero Order Hold 
For a zero order hold we integrate from 0 to ∆t , the size of the time step.  The integration 
of the inverse state transition matrix is the most difficult operation.   
 

0

t

e τ dτ τ
∆

−∫ A Bu( )      (2.179) 

 
Equation (2.180) shows the multiplication of  e BA− τ  
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Carrying out the matrix multiplication of  leaves Equation (2.181). e τ−A B
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Next , we add the integration nomenclature and  prepare to integrate from 0 to ∆t .  The 
u( )τ  term is constant during a zero order hold and can be moved outside of the 
integration. 
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2.14.8 Initial Preparation for Integration 
We must integrate the two terms. Again, we choose to make some substitutions which 
make our work easier. 
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We can ‘simplify’ our 1st  matrix term to   
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We need to break the sine term down and split the integration. 
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Pulling out the constants leaves us with Equation (2.186). 
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The second matrix term is simplified as follows: 
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Removing the constants from the integration leaves Equation (2.188). 
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2.14.9 The Two Common Integrations  
There are two common integrations which are required throughout the solution.  
Therefore we perform them here.   
 
The sine integration, the integration of Equation (2.189), is the first. 
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The cosine integration, the integration of Equation (2.194),  is the second. 
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2.14.10 The Complete Integrated Terms  
Next we substitute the integrated solutions into the matrix terms. 
 
Matrix term #1: 
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Matrix term #2: 
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2.14.11 Complete Integrated Portion of the Zero Order Hold 
 
The complete integrated portion of the zero order hold can now be written.   
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2.14.12 The Complete Solution 
The complete solution is shown below in Equation (2.202). 
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a L L k

a L k

p a

a

11 1

12 2

= −

= −
δ

δ

  
ω

ζω
n

n

a

a

2
12

112

= −

= −
 

 

-60- 



a

b

c

n

n

=

= − −

= −
−−

ζω

ω ζ

ζ
ζ

1

1

2

1
2

tan

  

K
L k

K

a

1

2

2

2 2

1

1

1

=
−

−

F
HG

I
KJ

=
−

F
HG

I
KJ

δ

ζ

ζ

 

 
It is important to note that the complete set of equations need only be calculated once for 
a given aircraft, set of feedback gains, and time steps size. Once the initial calculations 
are made, the relations used to actually update the state from one time step to another are 
simple. For instance, consider an aircraft with an open loop system as shown in Equation 
(2.203). 
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Using feedback gains of  k1 12 53= .  and k2 21 62= .  the resulting closed loop system is 
shown in Equation (2.204).   
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Discretizing the system for a 0.5 sec time step, using Equation (2.202), is shown in 
Equation (2.205). 
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Equation (2.205) is the only calculation that must be made to update between time steps. 
Figure 2.27 shows the simulation results from Equation (2.205) using a 10 degree desired 
bank angle.   
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Figure 2.27. Roll mode response to a 10 degree desired bank angle 
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3. The Examination of the Longitudinal Dynamics 
It can be argued that the majority of the effort put forth to build a successful feedback 
control system is spent trying to understand the plant which is to be controlled. This 
certainly is the case with the nonlinear longitudinal aircraft dynamics. The insight 
developed is a fundamental tool used to make intelligent decisions regarding feedback 
control strategy.  Section 3 deals with the development of solid insight into the plant 
dynamics which in our case is the longitudinal dynamics of the aircraft. To develop 
insight several tasks are performed. These tasks are: 
 
• Develop a linear model of the longitudinal dynamics 
• Analysis of longitudinal modal properties 
• Transfer function analysis of the longitudinal dynamics.  
 
The linear model of the aircraft dynamics is the fundamental tool which allows for the 
modal analysis and the examination of the transfer functions. Therefore, it must be built 
first.  Once the linear model is in place, the linear model is studied to determine what 
physical properties affect the modal properties of the system. Finally, certain transfer 
functions are created from the linear model that give insight into the different feedback 
control strategies that can be used.  
 

3.1 The Linear Model of the Longitudinal Dynamics 
The modeling equations for the aircraft dynamics, as presented in Table 2.3, are 
nonlinear with the exception of Equation (2.65). This nonlinearity limits our ability to 
perform an in depth study into the behavior of the system of equations and also precludes 
the design of a feedback control system.  To overcome this limitation, a common 
approach in feedback control is to develop a linearized version of the system of 
equations.  
 
In our linear modeling of the system of equations, we choose to separate the longitudinal 
dynamics from the lateral-directional dynamics.  We can do this because the longitudinal 
modes and the lateral-directional modes are only lightly coupled [Nelson89]. For the 
longitudinal case, we constrain the aircraft to not turn. 
 
In classical control theory, a linear, time-dependent (LTD) state-space is represented by 
the following system. 
 

 
( ) ( ) ( )
( ) ( ) ( )
t t

t t

x = Ax + Bu t

ty = Cx + Du

&
 (3.1) 

 
In this system, x is the system’s (in our case, the aircraft’s) state vector, u is the system’s 
control vector, y is the system’s output vector, and A, B, C, and D are constant matrices. 
The state vector is a collection of variables that completely describes the system’s state at 
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any given time. Our longitudinal state vector includes true airspeed, Va, flight path angle, 
γa, and altitude, h. The control vector is the system’s control inputs. Our longitudinal 
control vector includes lift coefficient, CL and thrust, T. In discrete time, if the state and 
the control inputs at a given time-step are known, the state equation yields the state at the 
next time-step. 
 
The output vector contains those parameters that are readily measurable by the controller. 
The aircraft (and, consequently, the aircraft’s controller) may not know its true airspeed 
or its flight path angle, but it is able to measure its indicated airspeed, VIAS, Mach 
number, M, altitude, h, and altitude rate, , and these parameters make up the output 
vector. 

h&

 
We wish to express the longitudinal dynamics as an LTD state-space, as in equation (3.1)
. This will facilitate an analysis of the modal properties. It will also facilitate the 
computation of feedback gains in Section 4. 
 
Equations (2.59) and (2.64) are the focus of the longitudinal dynamics. These two 
equations characterize the Phugoid mode of the aircraft. To get the appropriate altitude 
information, we add the third term of Equation (2.72) to our system of equations as 
shown in Equation (3.2). Altitude rate, h , and altitude, h, are both needed for the 
feedback control of the longitudinal dynamics. The equations for the longitudinal 
dynamics are repeated here. 

&

 
& sin

V
T D mg

ma
a=

− − γ     (2.59) 

 
&

cos cosγ φ γ
a

a

a

L mg

mV
=

−     (2.64) 

 
& sinh Va a= γ       (3.2) 

 
Within these equations are the terms L  and D , which are functions of the state variables.  
However, the terms L  and D  are not explicitly defined in terms of the state variables.  To 
do this we need to know the aerodynamic characteristics.   
 
Using the airframe equations of Section 2.10, we can express lift as shown in Equation 
(3.3). As discussed in Section 2.6, we know that the lift coefficient will be treated as a 
control input to the system, and will not be a function of the states. 
 

L V Sa w LC= 1
2

2ρ      (3.3)  
 

The aircraft drag can be similarly expressed. 
 

D V S Ca w D= 1
2

2ρ      (3.4) 
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where the drag coefficient, CD , of equation (2.143) is restated here. 
 

( )0

2
D D LC C KC= +     (2.143) 

 
1. CD0

 is the zero lift drag coefficient. 
2.    is the induced drag factor. K

 
We need to express the total drag in terms of the drag coefficient. 
 

( )0

21
2 a w D LD V S C KCρ= + 2    (3.5) 

 
 
These relations for lift and drag need to be substituted into the state equations.  Equations 
(2.59) and (3.5) are combined to get the explicit state equation for true airspeed. 
 

 
( )0

2 21
2 sina w D L a

a

T V S C KC mg
V

m

ρ γ− + −
=&  (3.6) 

 
 
Equations (2.73) and (3.3) are combined to get the explicit flight path angle equation. 
 

&
cos cosγ ρ φ γ

a
a w L a

a

V S C mg

mV
=

−1
2

2

    (3.7) 

 
We can represent Equations (3.6), (3.7), and (3.2) simply as functions of the state and 
control variables. 
 
 

( , , , ,
aa V a a LV f V h C Tγ=& )  

 
( , , , , )

aa a a Lf V h C Tγγ γ=&  
 

( , , , ,h a a Lh f V h C Tγ=& )  
 

This representation is convenient for representing the partial derivatives of the state 
equations.  The symbolically represented, linearized perturbation equations are shown 
below. 
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Similarly, the parameters of the output vector are repeated here. 
 

 

( )1

( 1)* 2
0

2 11 1 1
1 2IAS

o

pV a M
p

γ
γ γ

γγ
γ

−

−

 
   −    = + − +   −       

 

1 −  (2.134) 

 
*
aVM

a
=  (2.136) 

 h = h 

 
& sinh Va= aγ  (3.2) 

 
Once again, we can represent these equations as functions of the state and control 
variables.  
 
 
 ( , , , , )

IASIAS V a a LV g V h C Tγ=  
 
 ( , , , , )M a a LM g V h C Tγ=  
 
 ( , , , , )h a a Lh g V h C Tγ=  
 
  ( , , , , ) ( , , , , )a a L a a Lh hh g V h C T f V h C Tγ γ= =& &

&

 
 
The linearized perturbation equations of the output vector are, 
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V V V V V
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V V g V h T
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LM M g V h T C
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∂ ∂ ∂ ∂ ∂γ
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A partial derivative of a system equation is called a stability derivative if it is with 
respect to a state variable and a control derivative if it is with respect to a control 
variable.  The stability and control derivatives for the longitudinal model are organized in 
tabular form and presented in Table 3.1, Table 3.2, and Table 3.3. It is important to note 
that these derivatives are derived specifically for the 4 DOF model that we have 
constructed. These derivatives are similar, but not interchangeable with the classic 
stability and control derivatives of the full 6 DOF equations of motion such as those 
found in Nelson [N89] or Stevens [SL92]. 
 
By inspection, we see that the partial derivatives of 

IASVg , gM, and gh are all zero except 

for IASV

a

g
V

∂
∂

, M

a

g
V

∂
∂

 and hg
h

∂
∂

. From equations (2.134) and (2.136), 
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Table 3.1.  Stability and control derivatives of fVa
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State/Input Derivative of fVa
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Va = 0                                                                                 (3.12)
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−
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T  
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T m
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Table 3.2. Stability and control derivatives of f
aγ  

State/Input Derivative of f
aγ  

Va  ∂
∂

ρ
γγf

V
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m

g

V
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a

ref L

a
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2 2
cos                                               (3.15)
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γγf g

V
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a a
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ργf
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V S

m
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L
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2

                                                                   (3.18)

T  ∂
∂

γf

T
a = 0                                                                              (3.19)

 
 
 

Table 3.3. Stability and control derivatives of fh  

State/Input Derivative of fh  
Va  ∂

∂
γf

V
h

a
a= sin                                                                      (3.20)

γ a  ∂
∂γ

γf
Vh

a
a= cos a                                                                 (3.21)

h  ∂
∂
f

h
h = 0                                                                              (3.22)
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T  ∂
∂
f

T
h = 0                                                                              (3.24)

 
 
 
The LTD state-space representation of the linearized longitudinal dynamics (per 
equation (3.1)) is shown in equations (3.25) and (3.26).   
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All of the derivatives in these constant matrices are evaluated at the reference condition; 
the notation indicating that explicitly has been removed. Numerous derivative are zero 
for all cases.  These derivatives are: 
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Furthermore, if we assume that the aircraft’s reference condition is level flight (γ a = 0 ), 
we can set other derivatives to zero. 

∂
∂γ

∂
∂

γf f

V
a

a

h

a

= = 0  

 
Modifying our state equations results in Equations (3.27) and (3.28).  These equations 
represent the final form of the linearized model.  
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It is useful to compare the simulation results of the linear model to the results from the 
nonlinear model.  The expected result is that the linear model will agree with the 
nonlinear model for very small perturbations from the reference condition.  As the 
perturbations from the equilibrium condition become larger, the linear model will not 
follow the nonlinear dynamics.  This behavior is seen in Figure 3.1 and Figure 3.2.  Both 
figures show the time histories of the three longitudinal states along with the altitude rate 
as calculated by the linear and nonlinear models. Figure 3.1 shows the models’ response 
to a small perturbation or change in the nominal or reference lift coefficient.  As can be 
seen from the time histories of Figure 3.1, the match between the two models is good.  
However, as the perturbation or change in the nominal or reference lift coefficient 
becomes larger, the linear model fails to reflect accurately the behavior of the nonlinear 
dynamics.   
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Figure 3.1. Comparison of linear and nonlinear models with a 0.01 perturbation from the reference lift 

coefficient 
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Figure 3.2. Comparison of linear and nonlinear models with a 0.2 perturbation from the reference lift 
coefficient 

 
This is the limitation of using linear models. To account for this limitation, many linear 
models, all referenced about different reference conditions, are used to accurately model 
the aircraft’s performance throughout the entire flight envelope. 
 

3.2 The Analysis of Longitudinal Aircraft Modal Properties 
The main limitation of linear models is that they are valid only for a limited range around 
the reference conditions which were used to create them. To model an entire flight 
envelope of an aircraft, many linear models, each having its own set of reference 
conditions, must be developed. Immediately, one can then see the advantage to having a 
linear model which is a function of as few reference values as possible.  For instance, if 
the aircraft’s linear model varied only with true airspeed, it would make for a simple one 
dimensional set of linear models, each with a different true airspeed reference. However, 
we can see through observation that the linear model of the longitudinal dynamics for a 
given aircraft is fundamentally a function of three varying parameters. These are: 
 
• Va :   The aircraft’s true airspeed 
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• ρ :    The air density  
• :    The mass of the aircraft m
 
The fact that there are three terms immediately presents an inconvenience. Any set of 
linear models must be 3 dimensional. For instance, even a modest number of variations, 
say 10 true airspeeds, 10 masses, and 10 different air densities, would yield 1000 
reference conditions and hence 1000 linear models. It is therefore very desirable to 
eliminate a varying parameter if possible. Elimination of a varying parameter is the 
attempt of this section.    
 
Consider the state space representation of the system as shown in Equation (3.27). This 
system of equations contains three state equations, the first two of which, the ∆Va 
equation and the ∆γ a

h
 equation, characterize the Phugoid longitudinal mode.  The third 

state equation, the ∆  equation, only contributes to the calculation of altitude and does 
not affect the Phugoid mode. 
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  (3.27) 

 
Because the ∆  equation does not contribute to the Phugoid dynamics, we choose to 
ignore it in the following analysis. Ignoring the 

h
∆h equation reduces the state equations 

to Equation (3.29).  
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We can derive the characteristic equation for the A matrix of Equation (3.29) in terms of 
the derivatives using det  as shown in Equations (3.30) and (3.31). sI A−a f
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When we substitute for the actual derivatives we see that the characteristic equation 
expands to Equation (3.32). 
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If we neglect the effects of compressibility, we can simplify Equation (3.32) to Equation 
(3.33).   
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We know from classical control theory that the natural frequency and damping ratio are 
represented in the characteristic equation as  s sn

2 22 n+ +ζω ω .  Therefore we can assign 
the last term (s ) to equal the square of the Phugoid frequency, 0 ω p . 
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We  can gain insight from this equation.  First, if the flight path angle is small, the 
relation can be reduced to Equation (3.35).  
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The ratio g  is likely to dominate this term at low speeds and be small at high speeds.  
It is a function of  true airspeed squared which is proportional to dynamic pressure.  
Consider the other term.  It is inversely proportional to the mass.  This suggests that as 
the mass goes down, the frequency goes up.  This is true providing that the lift coefficient 
does not change.  However, it is likely that the lift coefficient will change with mass 
because the pilot will always tend to trim the aircraft for a given flight condition. If we 
assume that lift equals weight or is close to equaling weight for the vast number of flight 
conditions we can write the relation for mass as seen in Equation (3.36).  

Va

2

2

 
qS C mgw L =       (3.36) 
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Using (3.36) we can substitute for CL  in Equation (3.35) resulting the Phugoid expression 
in Equation (3.37). 
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Canceling terms leaves (3.38). 
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Finally, noting that the dynamic pressure is a function of density and true airspeed, 
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we can see that the Phugoid frequency for the trimmed aircraft  is entirely a function of 
true airspeed as shown in Equation (3.40). 
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This is an interesting result because it suggests that the frequency of the Phugoid is not a 
function of the weight of the aircraft or the altitude at which the aircraft is flying.  
 
Moving to the damping ratio of the Phugoid mode, we can express the damping ratio 
using the middle (s )  term of the characteristic equation if we divide by 21 ω p  as shown in 
Equation (3.41). 
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Unfortunately, there is no simplification that reduces the damping ratio to a single 
function of any parameter that we have so far defined. This expression for damping 
implies that the only way to schedule gains to control the Phugoid is to have 3 
dimensional tables consisting of aircraft weight, true airspeed and altitude (air density).  
This creates a large computational burden and requires the storage of many scheduled 
feedback gains. It is desirable to somehow reduce the schedule to a 2 dimensional table. 
One solution is to substitute dynamic pressure for the density and true airspeed. This 
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substitution effectively assumes that changes in speed and altitude (density) can be 
interchangeable.  However, we can see that density and speed work independently of 
each other.  While it may be acceptable to schedule vs dynamic pressure, it is only an 
approximation.  It is better if another quantity can be found. 
   
Working towards a simplified expression for damping we revisit Equation (3.41). 
Assuming a trimmed aircraft, we can substitute Equation (3.36) into Equation (3.42) for 
weight, mg . After some algebraic manipulation, the final result is shown in Equation 
(3.43). 
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We see that the damping is a function of the lift to drag ratio of the aircraft. An 
alternative derivation is contained in Nelson [N89], which comes to the same basic 
conclusion.  Unfortunately, it is impossible for the control logic or any sophisticated 
instrument to actually measure the lift to drag ratio of the aircraft. However, the lift to 
drag ratio is always a function of the lift coefficient at a given time. So, while the lift to 
drag ratio can not be known, we can approximately measure the trim lift coefficient at 
any given time in the flight and know that the lift coefficient corresponds to a particular 
location on the drag polar and hence a particular L/D. Therefore, the conclusion is that 
the modal properties for the aircraft are uniquely described by the trim lift coefficient and 
the true airspeed. However this does not consider the control derivatives.  
 
There are three control derivatives to be considered as shown in Equations (3.44) through 
(3.46). 
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Consider the expression for the lift coefficient in Equation (3.47). If the lift coefficient 
and the true airspeed are known, it is possible to solve for the ratio between the air 
density and the aircraft’s mass. This can be seen in Equation (3.48). 
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While it is not possible to solve for the mass and density directly, we can solve for the 
ratio, which is then all that is needed to define two of the control derivatives as shown in 
Equations (3.49) and (3.50).  
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The final control derivative, the ∂

∂
f

T
Va  derivative, is obviously a function of mass only.  

Therefore, it is not completely possible to define the whole system using two parameters. 
However, having only one term which is a function of mass is far more convenient than 
having the mass term throughout the model. All gain calculations can be done using a 
nominal mass and varying true airspeed and trim lift coefficient.  To accommodate 
different aircraft masses only one term need be changed.  
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4. The Feedback Control System for Longitudinal Control  
In the previous Chapters, the bulk of the analysis effort was spent on the derivation of the 
physical model of the aircraft. The physical model of the aircraft consisted of the 
dynamic equations, which model the aircraft’s performance, and the kinematic equations, 
which characterize the aircraft’s propagation over the surface of the Earth. The purpose 
of building such an intricate model is to insure the fidelity of the model for modeling 
actual aircraft in flight. The main advantage of a high fidelity aircraft model is that it 
accurately models the performance and handling characteristics of an aircraft. 
Accordingly, the disadvantage of a high fidelity aircraft model is that it accurately 
models the performance and handling characteristics of the aircraft. To make the aircraft 
model follow a desired trajectory, the aircraft model must be ‘flown’ by a pilot in the 
same sense that the actual aircraft must be flown. Arguably, the longitudinal control 
system is the most complicated and sensitive part of the entire simulation. This Chapter is 
the first of three Chapters which covers the longitudinal control system. 
 
The purpose of the longitudinal control system is to provide a means of automating two 
fundamental aircraft maneuvers.  These maneuvers are:  
 
• Altitude change and altitude capture 
• Speed change and speed capture 
 
Generally, the functionality of the longitudinal control system can be divided into two 
distinct classes of algorithms.  These two classes are feedback control and supporting 
functional logic. This Chapter deals with the design of the feedback control algorithms 
which actually stabilize the aircraft and drive it to the desired state. There are different 
feedback control algorithms for different flight phases, and each of these is discussed 
along with a strategy for calculating the required gains. 

4.1 The General Control Law 
The general control law for the longitudinal dynamics is the same regardless of which 
region the aircraft is operating. The only real difference between regions from the 
feedback control standpoint is what gains are used. The general control law framework 
allows for any output variable to be fed back to any input variable.  
 
The general framework for the longitudinal control law is shown in block diagram form 
in Figure 4.1. The terms in the block diagram are defined as follows: 
 
• yd is the desired output vector 
• y is the actual output vector 
• e is the error vector equivalent to yd - y 
•  is the proportional gain matrix in the feed-forward path. pK
•  is the integral gain matrix (also in the feed-forward path) iK
•  is the proportional gain matrix in the feedback path bK
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•  is the linearized state equation for the longitudinal dynamics x = Ax + Bu&

• y = Cx + Du  is the output equation for the longitudinal dynamics 
 
From experience in dealing with the longitudinal dynamics, we have seen that 
proportional control using the appropriate output error, e , is sufficient to achieve the 
dynamic response desired. Integral control is then added to eliminate steady-state error. 
The final feedback loop, the one using , is designed to allow proportional feedback 
control of certain output variables without affecting the zeros of the transfer functions. 
Gains in the feedback path affect only the modal properties of a system; gains in the 
feedforward path affect the dynamics of the system while at the same time driving the 
state error to zero. In certain instances it is necessary to make use of the stabilization 
offered by feeding back a particular output while not driving that output to any particular 
value.  The  feedback path was added as a direct result of the analysis done in Chapter 
2, where non-minimum phase behavior was observed. 

bK

bK

 
&x Ax Bu

y Cx Du

= +
= +K

K

s
ep

i+FH
I
K
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yd
ye

 
 

Figure 4.1. Block diagram for the longitudinal control law 
 

The general form of a LTD state-space is restated here. 
 

 
( ) ( ) ( )
( ) ( ) ( )
t t

t t

x = Ax + Bu t

ty = Cx + Du

&
 (4.1) 

 
Our general control law is defined in the time-domain as, 
 

 ( ) ( ) ( ) ( )t t t∫
t

p i b0
u = K e + K e dt - K ty  (4.2) 

 
The gain matrices, Kp, Ki, and Kb, are the proportional, integral, and feedback gain 
matrices.  Because the general control law allows for any output variable to be fed back 
to any input variable, a gain matrix is of dimension (n x l), and is of the form, 
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where, n is the number of control variables in the control vector, l is the number of output 
variables in the output vector, and the subscript, p, refers to the proportional gain matrix. 
The form the integral and feedback gain matrices is the same except that subscripts i and 
b are substituted for the subscript p. 
 

4.2 Manipulating an LTD State-Space with Integral Control 
Integral control adds system poles to our state-space. In effect, it changes the order or our 
LTD system. This can be seen explicitly if we modify our LTD system to include the 
differential equations added by our integral controller. Let’s define proportional and 
integral control vectors as, 
 

 
( ) ( ) ( )
( ) ( )

t t

t t
p p b

i i

u = K e - K ty

u = K e
 (4.4) 

 
and let’s define the integrated control as, 
 
  ( ) ( )

0

t
t t= ∫u iI u dt

 
Then the control vector can be written in terms of its separated proportional and integral 
terms. 
 
 ( ) ( ) ( )t t= +p uu u I t  
 
Clearly, the derivative of the integrated control vector, Iu, is the integral control vector, 
ui. 
 
 ( ) ( )t =u iI u& t  (4.5) 
 
The state equation can be rewritten in terms of the separated control vector. 
 
 ( ) ( ) ( ) ( )t t t t + p ux = Ax + B u I&  
 
 ( ) ( ) ( ) ( )t t t +p ux = Ax + Bu BI& t  (4.6) 
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Combining equations (4.5) and (4.6) and the output equation into one LTD system gives, 
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From equation (4.4), the control law can be written as, 
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• m is the number of state variables in the state vector (3 in our current example), 
• n is the number of control variables in the control vector (2), 
• l is the number of output variables in the output vector (4),  
• 0n is a square, n x n matrix of zeros, and 
• 0n,m is a n x m matrix of zeros. 

 
For the purposes of analyzing the modal properties of our linearized system, consider that 
the state, control, and output vectors are simply perturbations from a reference condition. 
Without affecting the system’s characteristic equation, it can be assumed that our desired 
result is to return to that reference condition. Then the output vector, yd, is a vector of 
zeros and the error vector, e, becomes the negative of the output vector, y. 
 
 ( )lde = y - y = 0 - y = -y  

 
Then the control law, defined by equation (4.4), can be written as, 
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Since, in this linear approximation, there is no way to differentiate between the effects of 
proportional gain in the feed-forward path, Kb, and proportional gain in the feedback 
path, Kp, there is no use in considering both and so Kb is neglected. 
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Equations (4.7) still follow the format of an LTD system:  the new A-matrix is square, 
the new state and control are still time-dependent row vectors, and the new A-, B-, C-, 
and D-matrices are constant. Once combined with the standard output-based feedback 
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control law of equation (4.9), we have a complete linear, time-dependent (LTD) feedback 
control system conducive to modal analysis. It is a convenient form that adds the integral 
terms (and their resultant poles) to the state vector to facilitate the analysis of modal 
properties and calculation of gains.  
 

4.3 An Analysis of the Effects of Feedback Control on the Modal 
Properties 

Until this point, the analysis of this chapter is generalized to any LTD system with a 
control law defined by equation (4.2), but we now begin to tailor the analysis to our 
model. When we combine our LTD system of equations (4.7) with our original state, 
control, and output vectors and our A-, B-, C- and D-matrices as defined in Chapter 3, we 
get, 
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And the general form of our LTD system is, 
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(4.10)1 
 
Following the form of the general gain matrix of equation (4.3), our proportional, 
integral, and feedback gain matrices are, 

                                                 
1 Note that the h  equation has added a factor of 60 to its  & ∂

∂g
fh

a
 term.  This is to convert 

the output from ft
sec  to ft

min  as would be read on a real vertical speed indicator. 
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Substituting into equation (4.9), we have our control law. 
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There are 16 gains in our gain matrix, each representing the effect of feedback of a 
particular output parameter to a particular control parameter. To gain insight into the 
effect each feedback gain is likely to have, we examine the root locus of each gain. 
Consider a Boeing 767-300 at a reference weight of 198,000 lbs in steady, level flight at 
300 knots indicated airspeed (KIAS) and 30,000 feet. For this example, the LTD system 
of equations (4.10) becomes, 
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Figure 4.2. Effects of proportional feedback to the lift coefficient 

 
Figure 4.2 - Figure 4.5 show how the phugoid mode poles are moved by various types of 
feedback. Figure 4.2 illustrates the system’s behavior with different proportional 
feedback to the lift coefficient. The first subplot shows the positive feedback of indicated 
airspeed to the lift coefficient, which we see is unstable. A moment’s reflection on the 
nature of the system provides intuitive verification.  An increase in the lift coefficient 
results in higher drag, which serves to slow the aircraft. This implies that lowering the lift 
coefficient would serve to increase speed. The second subplot verifies this and shows 
negative speed feedback to the lift coefficient provides for a stable control. 
 
The third subplot shows the effect of altitude feedback to lift coefficient which we see 
tends to shoot the phugoid poles up along the imaginary axis. This will increase the 
phugoid natural frequency while reducing the damping of the system.  
 
The fourth subplot shows the effect of altitude rate feedback to lift coefficient. Here we 
see a well behaved loop. Feeding back the altitude rate tends to dampen the system. This 
effect can be intuitively verified by remembering that rate terms usually do increase the 
damping of a system.  
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Figure 4.3. Effects of integral feedback to the lift coefficient 

 
Figure 4.3 shows the effects of integral feedback to the lift coefficient. The second 
subplot shows a problem with instabilities of integral speed feedback to the lift 
coefficient. If we choose to use negative integral speed feedback to the lift coefficient, we 
will need to feed some output in the feedback path to keep it stable. The fourth subplot 
shows that we need to be careful with low damping of integral altitude rate feedback to 
the lift coefficient. 
 
Figure 4.4 shows the effect of proportional feedback to the thrust. The first subplot shows 
positive feedback of indicated airspeed to the thrust. The locus is well behaved and tends 
to increase the damping of the system. Positive feedback of indicated airspeed or Mach to 
the thrust is a good choice for the control of speed. The fourth subplot shows altitude rate 
feedback to the thrust.  The altitude rate here tends to have the same effect on the 
Phugoid poles that altitude feedback had to the lift coefficient. Altitude rate feedback to 
the thrust is not a good choice for controlling altitude rate or altitude. Similarly, the third 
subplot shows that altitude feedback to the thrust drives the system unstable 
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Figure 4.4  Effects of Proportional Feedback to the Thrust 

 
Figure 4.5 shows the effects of integral feedback to the thrust. The third and fourth 
subplots confirm that it is not wise to control altitude or altitude rate with thrust because 
the system becomes unstable as soon as we apply control. The first subplot shows that 
integral feedback of speed to the thrust tends to shoot the phugoid poles up the imaginary 
axis, increasing the natural frequency and lowering the damping of the response. This 
implies that we need to be mindful of low damping when controlling speed with the 
thrust. 
 

4.4 Feedback Controller Design 
In the previous section, we analyzed the effects of feedback control on the modal 
properties of the LTD system in order to gain insight into how feedback control would 
affect our nonlinear, four-degree-of-freedom model. In this section, we continue to use 
the LTD system to design feedback controllers for several different regions of an 
aircraft’s flight regime. The LTD system provides a suitable approximation to the 
nonlinear system so that feedback controllers designed using the LTD system will 
produce similar results in our nonlinear model. Each controller is customized to attain the 
desired flight configuration using smooth transitions that are typical of commercial 
aircraft flight. 
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Figure 4.5  Effects of Integral Feedback to the Thrust 

 
Let us summarize our conclusions from the analysis of the root loci of the LTD system. 
The primary control input in an aircraft is the control stick (i.e., the lift coefficient), so it 
should be the primary control in our controller as well. Figure 4.2 and Figure 4.3 show 
that we can successfully control speed with the lift coefficient, as long as we use negative 
feedback, and as long as we feed output (e.g., altitude rate) in the feedback path to keep 
the controller stable. Figure 4.2 and Figure 4.3 also show that we can successfully control 
altitude rate with the lift coefficient. Figure 4.4 and Figure 4.5 show that we can 
successfully control speed with the throttle (i.e., thrust). Our basic strategy will be to … 
 

• use lift coefficient to control altitude rate during speed changes; 
• use lift coefficient to control speed during altitude changes, while feeding back 

altitude rate to keep the system stable; and 
• use thrust to control speed and lift coefficient to control altitude rate when we 

need to control both. 
 
Our control law allows us to feedback all outputs to both inputs; although only a fraction 
of the gains are used in a given feedback system. To design our controllers, we will use 
our full control law, as defined by equation (4.8) and expanded here using the gain matrix 
definitions of equations (4.11), (4.12), and (4.13). 
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  (4.15) 

 
The control inputs to the system split into their proportional and integrated parts. The 
control inputs 

CLPu  and 
TPu  are the proportional portions of the lift coefficient and thrust 

respectively, and 
CLiu and  are the integrated portions of lift coefficient and thrust. 

Ti
u

 

4.4.1 Lift Coefficient Control of Altitude Rate 
There are several flight regimes in which a pilot uses the control stick to capture or 
maintain altitude rate while allowing the speed to change. During level flight 
accelerations and decelerations, a pilot will preset the thrust (maximum thrust for 
acceleration, idle thrust for deceleration) and allow the speed to change accordingly 
while using the control stick to maintain level flight (i.e., a zero altitude rate). 
Alternatively, the pilot may wish to capture and maintain a desired, non-zero altitude rate 
and let the speed change as it may (i.e., during accelerations in climb or decelerations in 
descent). 
 
For these regions, we need a controller that uses lift coefficient to control altitude rate but 
does not modulate thrust. In the truest sense, the controller is not controlling speed; 
however, in actuality the speed is controlled because we preset the thrust according to the 
desired direction of the speed change. When the speed nears the desired steady, level 
flight condition, we switch to a controller that simultaneously controls speed and altitude 
rate. 
 
To accomplish the goals of this controller, we need simply to command an altitude rate 
for all time. For this reason we can simplify the output equation of the LTD system of 
equation (4.10) to, 
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In doing so, we can see that the dynamics of the system are governed exclusively by the 

L
h

C
&  transfer function as defined in Chapter 3. Recall that since we control only the lift 

coefficient, the system is non-minimum phase at slow speeds; however, there is no need 
for a separate control law for the non-minimum phase system. Chapter 5 will show how 
we relieve the problems of the non-minimum phase system by ensuring that the thrust is 
sufficient to counter the changing drag. 
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Consider a DC-9 traveling at 15000 ft and 578 ft/sec and weighing 140,000lbs. The LTD 
system is shown below with its reduced control and output vectors. The Phugoid 
eigenvalues for the open loop system are located at -0.0036  0.0786i± which 
corresponds to a natural frequency of 0.0787 rad/sec and a damping ratio of 0.0445. A 
plot of the step response of the system to a 0.1 change in lift coefficient is shown in 
Figure 4.6. 
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It is desired to increase the frequency and damping of the system while having zero 
steady state error. We start with proportional altitude rate feedback to the lift coefficient, 

, shown in the left side of Figure 4.7.  A value of 
14pk

14

52 6 10.pk −= ×  moves the Phugoid 
poles to location of  with a damping ratio of 0.7173 and a natural 
frequency of 0.0806rad/sec. Since the frequency is rather low, we can increase it by use 
of integral control. Note that the purpose of integral control is to guarantee zero steady 
state error, not frequency changes; in this particular case, integral control can increase the 
system frequency. As seen on the right half of Figure 4.7, we move the Phugoid poles 
with 

-0.0578  0.0562i±

 

 -91- 



0 200 400 600 800 1000 1200 1400
−6000

−4000

−2000

0

2000

4000

6000

Time (secs)

h_
do

t f
t/m

in

 
Figure 4.6. System response to a 0.1 step in lift coefficient 
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Figure 4.7.  Root Loci of (left) and (right) successive loop closures 

14pk
14ik

 

14

-59.0 10ik = ×  to a location of  -0.0565  0.6152i± . In doing so, we increase the 
frequency of the mode to 0.6178 rad/sec but we reduce the damping to 0.0914. To correct 
for the low damping we can increase the gain k  once again and move the Phugoid 
poles to the left as shown in Figure 4.8. 

14p

 
The final values chosen for  and k  are  and 9.0 . The final step 
response is shown in Figure 4.9. Notice that the system achieves the 1000 ft/min climb 
rate with zero steady state error. Furthermore, the time history for the lift coefficient is 
well within acceptable bounds. Note however that the lift coefficient initially is rather 
aggressive. In the next chapter, we define limits to the amount a control input can change 
in a time-step so that such aggressive control action is made more realistic. 

14pk
14i

-42.08 10× -510×
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Figure 4.8. The effects of an increased proportional gain k   
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Figure 4.9. System response to a 1000 ft/min rate commanded rate of climb 

 
The method of successive loop closures is good for initial work and illustration of the 
system dynamics, but it is tedious if many gains must be chosen or specific dynamic 
properties are desired quickly. Furthermore, for the purpose of scheduling gains, the 
method of choosing gains must be automated. Automating gain scheduling is reasonably 
straightforward once a control scheme has been established. Since the control logic is 
simple, the method of pole placement can be completely analytic. This explicit method of 
pole placement is outlined in Brogan [Br91]. Its limitation is that it is cumbersome and 
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useful only for low order systems, however its simplicity gives added flexibility in gain 
selection.  
 
The process starts with replacing the individual terms in the system of equations with 
placeholders to simplify the final expressions. Furthermore, since we are not feeding 
back altitude, and it does not contribute to the Phugoid mode, we can remove it from the 
state equation. 
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We want to be able to control the eigenvalues of the closed loop A-matrix, which is 
defined as follows. 
 

clA = A - BKC         
 

    

[14

14

11 12 11 11

21 21 21 42

0 0
0 0 0

0
0 0 0 0 1

p

i

a a b b k
a b b c

k

        −              
clA = ]0

0

    

 
Simplifying, 
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we have the final closed loop A-matrix in Equation (4.17). 
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Next, we need to calculate the characteristic equation for the A-matrix.   
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Finally, we have an expression for the characteristic equation shown in (4.18). 
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 (4.18) 
 

From this we can determine what gains are necessary to achieve the desired characteristic 
equation.  We have the following form of the characteristic equation: 
  
    [ ] 3 2

1 2 3det s c s c s c s 4c= + + +clI - A  
 
Therefore, we can set each coefficient equal to its corresponding term in Equation (4.18).  
 

1 1c =          

( )142 42 21 11pc c b k a= −        
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( )14 14 143 21 42 11 42 21 12 21 42 11 21i pc b c k a c b k a a c b k a= − − + p    

( )14 144 21 42 11 11 21 42ic a c b k a b c k= − i      
 

Being able to define the coefficients in terms of the gains is helpful; however, we really 
want to determine the gains from the coefficients to be sure of getting the correct 
response.  This is a problem because we have three linearly independent equations and 2 
unknown gains.  This problem is alleviated because of our choice of a single equilibrium 
condition for gain calculation: steady, level flight at the speed for maximum lift-to-drag 
ratio (see chapter 6) 2. In this flight condition, the term, (a21b11 - a11b21) is identically zero 
(see appendix for derivation). 
 
 (a21b11 - a11b21) = 0 

 
The system of coefficients becomes, 
 

1 1c =  

( )142 42 21 11pc c b k a= −  

( )143 21 42 12 21ic b c k a a= −  

4 0c =  
 
With the c4 equation eliminated, we have a system of two equations in 2 unknown gains 
and we can solve for the gains directly. Also, this corresponds to an integral pole at s = 0. 
The characteristic equation is now, 
 
 [ ] ( )2

2 3det s s s c s= + +clI - A c  
 
The coefficients represent the second order phugoid dynamics, so we can easily specify 
the phugoid modal properties, pζ , the damping ratio of the phugoid, and pω , the natural 
frequency of the phugoid and rewrite the characteristic equation.  
 
 [ ] ( )2 2det 2 p p ps s s sζ ω ω= + +clI - A  

 
The system of the gain equations is then rewritten in terms of the phugoid dynamics, 
 

( )1442 21 112 p p pc b k aζ ω = −  

( )14

2
21 42 12 21p ib c k a aω = −  

 

                                                 
2 Also integral to this analysis is that 

16MC  is set to zero. This is because at the time of this revision, 

compressibility drag had been removed from the model. 
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We can now solve for the feedback gains. 
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4.4.2 Lift Coefficient Control of Speed 
During climbs and descents, a pilot typically maintains a constant airspeed or Mach 
number during the altitude change. The pilot will preset the thrust (climb thrust for 
climbs, idle thrust for descents) and allow the altitude rate to vary accordingly while 
using the control stick to maintain speed. For these regions, we need a controller that uses 
lift coefficient to control speed but does not modulate thrust. Since the aircraft has two 
measurements for speed, Mach and indicated airspeed, both speeds have to be considered 
in separate analyses. However, since the solutions are identical with the exception of a 
few changes in feedback gains, only the Mach case is discussed. 
 
The goal of the feedback controller is to capture a given speed by adjusting the lift 
coefficient. This means that the system is mainly governed by the 

L
M

C  transfer function 
discussed in Section 3.3.2. This is convenient because we know from previous analysis 
that this part of the system dynamics is not afflicted with non-minimum phase behavior. 
However, feedback of speed to the lift coefficient has a problem with low damping as can 
be seen in Figure 4.2. The feedback control strategy to fix the low damping problem has 
already been touched upon in Section 3.3.2. Our basic strategy is to build a proportional -
plus- integral controller for capturing Mach, and then feedback altitude rate in the 
feedback path to increase the damping of the system.  
 
We will need two of the four outputs to complete the design, so the output equation of the 
LTD system of equation (4.10) can be simplified to, 
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Consider the same DC-9 traveling at 15000 ft and 578 ft/sec and weighing 140,000lbs. 
The open loop dynamics for the system are the same as shown in equation (4.16), and our 
new output equation is 
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Initially, the Phugoid eigenvalues are located at -0.0036  0.0786i±  which correspond to 
a natural frequency of  0.0787 rad/sec and a damping ratio of 0.0445. We start the loop 
closures by closing the feedback path  as shown in Figure 4.10.  Setting 

moves the Phugoid poles to
14bk

14

52 7 10.bk −= × -0.0599  0.0540i±  where they have a 
damping ratio of 0.7173 and a natural frequency of 0.0806 rad/sec.  Applying 
proportional Mach feedback to the lift coefficient, we increase the frequency of the 
Phugoid poles to 0.20 rad/sec, which we initially think is a good value as shown in Figure 
4.11. The resulting feedback gain is 

12p 9 5.k = − . Note the negative value of . This 
makes intuitive sense because an increase in speed should be the result of a lower lift 
coefficient. To test the partially built controller, we attempt a command to Mach 0.7. 
From the simulation shown in Figure 4.12, we find out that while we like the response, 
the required control effort is excessive. The lift coefficient drops nearly to -1. Realizing 
that too much control effort is required, we drop the frequency down to 0.1 rad/sec which 
corresponds to a gain of . With this reduction in gain, the Phugoid poles sit at 

 with a  frequency of 0.1095 rad/sec and a damping ratio of 0.5647.  

12pk

12
1 5.pk = −

-0.0618  0.0904i±
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Figure 4.10. k  root locus for the Mach Capture controller  
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The next loop closure, the integral control, is tricky because the integral control tends to 
send the Phugoid poles towards the right half plane. Integral control also pulls the 
integrator pole away from zero along the negative real axis. A gain of  is 

12
0 1.ik = −
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applied which tends to line up the real parts of the Phugoid pole with the integrator pole 
as shown in Figure 4.13. The Phugoid poles move to -0.0412  0.0846i±  where the 
frequency is 0.0941 rad/sec and the damping is 0.4377. Since the damping is low, more 
altitude rate is applied. The altitude rate is applied until the locus starts to curve back 
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Figure 4.11. root locus for the Mach Capture controller 
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inward and head towards the imaginary axis.  The gain is set to  where the 
frequency of the Phugoid is 0.0614rad/sec and the damping is 0.7265.  

510−= ×

 
We also note that the integrator pole is moved to -0.0971. The complete system is 
simulated as shown in Figure 4.14. From Figure 4.14 we see that the controller captures a 
Mach of 0.7 and that the lift coefficient is not unreasonable. However, the speed of the 
response is low. 
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Figure 4.12. Simulated Mach Capture 
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Figure 4.13.  (left) and  (right)  root loci for Mach capture 
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Figure 4.14.  Simulation of the Completed Mach Capture 

 
In adding the extra gain to  we diminished our frequency so we would probably want 
to redo the design if this set of gains were actually going to be used. However, the actual 
gains used are calculated automatically by the gain scheduling algorithm where we can 
choose exactly the modal properties that we want. 

14bk

 
We have seen from the control law design that successive loop closures can be difficult. 
In this example, one can see that just about any set of modal properties could be 
achieved; however, the trial and error approach is certain to take a considerable amount 
of time. It is still valuable to manually close the loops at least once because it helps to 
build our understanding of the system dynamics. For instance, we now know that high 
system frequencies require an excessive control force. For this system, it is best to 
schedule natural frequencies on the order of 0.1 rad/sec and no higher. For the purpose of 
scheduling the actual gains, the automated method is presented next.  
 
Taking the LTD system of equation (4.10), we remove indicated airspeed and altitude 
from the output equation and we remove altitude and integrated thrust from the state 
equation. 
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The basic control law as developed earlier is, 
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where    

 
( )2 de M M= −    

 
Note that for the purpose of determining eigenvalues, the gains  and  have 
identical effects.  Therefore we substitute  into the matrix location reserved for k  
for the purposes of gain scheduling only. The gain matrix becomes, 
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The closed loop form of the equations (A-BKC) is, 
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The characteristic equation is calculated next. 
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Summing like terms yields the characteristic equation. 
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The coefficients of the terms are difficult to manage so some effort is applied to 
simplifying them. We wish to express the characteristic equation in the form, 
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Setting the two forms equal, we can solve for the coefficients. 
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Assuming that the gain k  is known, we can solve for the other gains. 
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Plugging these gains back into the C3 equation yields, 
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Simplifying, 
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and we can solve for the gain . 
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Because we have three gains, we see that we were able to specify all the coefficients of 
the characteristic equation. This enables us to place the poles arbitrarily. We can choose 
the frequency and damping of the Phugoid poles and the location of the integrator pole. 
From our manual loop closing, we also have some idea of what values make good gains. 
We can specify the coefficients in terms of the desired modal properties and the location 
of the integrator pole by expressing the characteristic equation in terms of its roots.  
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Table 4.1 summarizes the gain scheduling equations used for this controller. Looking at 
Figure 4.14, we see that the lift coefficient is still commanded rather violently. Therefore 
we decide to specify slower dynamics. Using equations in Table 4.1 we can try many 
different modal properties quickly. After some experimentation, we choose the following 
modal properties: 
 
• 0 05. /p rad secω =  
• 0 7.pζ =  
• Integrator pole location: -0.05 
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Table 4.1. The gain scheduling equations for lift coefficient control of speed 
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The gains for this set of modal properties are 

12
0 1635.pk = , 

12
0 0342.ik = − , and 

.  Figure 4.15 shows the simulation results. With the slower dynamics, 
the lift coefficient no longer has its initial sharp dip; however the system takes 40 
seconds longer to capture the desired Mach number. This performance penalty is 
acceptable because an extra 40 seconds is not much time in the course of an entire flight.  

14

40 2715 10.bk −= ×

 

4.4.3 Controlling Speed and Altitude Rate Simultaneously 
Maintaining a specified speed and a specified altitude rate (as in steady, level flight) 
requires feedback control of both the thrust and lift coefficient. Because of this, the 
controller for this flight regime is the most complicated of our controllers. It is also the 
most used controller, because the aircraft spends most of its time controlling both speed 
and altitude (as in steady, level flight). The design goals of this controller are also the 
most ambitious. Here, we desire to drive both the speed of the aircraft and altitude rate to 
some commanded values. 
 
Consider the same DC-9 traveling at 15000 ft and 578 ft/sec and weighing 140,000lbs. 
The open loop dynamics for system are the same as shown in equation (4.16);  however, 
because of the addition of the throttle feedback control, we need to use the full state 
equation of the LTD system in equation (4.10). With the given flight condition, the state 
equation becomes,  
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Since we want to be able to drive the aircraft to a particular speed and altitude rate 
independently of each other, we must be very careful how we arrange the feedback in the 
feed-forward path. Feedback to any one input cannot be used to drive two independent 
errors to zero simultaneously. By observing effects of feedback in Figure 4.2 and Figure 
4.3, we see that the throttle is much more adept at controlling speed than altitude rate. 
This is because the feedback of speed to the throttle tends to increase the damping of the 
Phugoid mode. Similarly, the lift coefficient is a much better control of altitude rate than 
speed. Therefore we only allow speed feedback to the throttle and altitude rate feedback 
to the lift coefficient. For purposes of this demonstration, we use Mach in the feedback. 
The control laws which use indicated airspeed are identical in form. 
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Figure 4.15.  Simulation of Mach capture with slower dynamics 
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Figure 4.16.  The initial (left plot) and (right plot) loop closures for region 7 
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Initially, the Phugoid eigenvalues are located at -0.0036  0.0786i±  which corresponds to 
a natural frequency of 0.0787rad/sec and a damping ratio of 0.0445. Initially, we close 
the lift coefficient feedback paths in a manner very similar to what was done in Section 
4.4.1. We close the proportional loop first using . We increase the proportional gain 

to  as shown in Figure 4.16. This results in Phugoid poles at 
. Our modal properties are 

14pk

0 081rad. / secp

14

53 0 10.pk −= ×
0 0662 0 0465. . i− ± ω =  and 0 819.pζ = . Our 

damping ratio is acceptable; however, our frequency is low. We adjust the frequency  
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Figure 4.17. The final increase in  to achieve adequate damping 

14pk

when we add integral control. As shown in the second plot of Figure 4.16 , we increase 
the integral gain to . This moves the Phugoid poles to  
where the modal properties are 

14

53 7 10.ik −= ×

p

 -0.0648  0.3954i±
0 4rad. / secω =  and 0 1618.pζ = . While this results in 
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an acceptable frequency, the damping ratio is too low. Therefore, we increase the 
proportional gain to 

14

41 34 10.pk −= ×
0.2850i

 as shown in Figure 4.17.  This results in Phugoid 
poles of  with the corresponding modal properties of   -0.2818 ± 0 7031.pζ =  and 

0 4p rad. / secω = . The position of the integrator pole is -0.0027. 
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At this point we can illustrate the system dynamics by commanding a 1000 ft/min rate of 
climb. The simulation results, shown in Figure 4.18, show response of altitude rate and 
Mach number as well as the lift coefficient and thrust inputs. We can see that we 
approximately achieve the 1000 ft/min climb rate; however, we have a small error of 
approximately 25 ft/min. This error is due to the slow integrator pole. We ignore this 
small error for now. We also see that the Mach number tapers off during the climb. This 
is expected at the moment because there is no feedback to the throttle to maintain Mach 
(the thrust is constant). 
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Figure 4.18. Simulation of a commanded 1000ft/min rate of climb without any feedback to thrust 
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Figure 4.19.  Root loci  for k  (left plot) and (right plot)  
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We also see that the controller slowly increases the lift coefficient to maintain the rate of 
climb as the aircraft slows down. If the controller is left to continue, it will stall the 
aircraft. Adding feedback to thrust corrects the problem. Feedback to thrust is initiated 
using proportional control. We increase the gain  to 1.56  as shown on the left 
side of Figure 4.19. The Phugoid is virtually unaffected by the proportional feedback to 
throttle. The biggest influence of the proportional feedback to the thrust is to move the 
integrator pole for the lift coefficient feedback farther negative. The lift coefficient’s 
integrator pole is moved to -0.3222. This is actually desirable because it reduces the 
steady state error in altitude rate. The final loop closure, integrated thrust is closed next. 
As shown on the right hand side of Figure 4.19, the integrated feedback to thrust has 
virtually no effect on the Phugoid dynamics. Rather, it tends to draw the two integrator 
poles together. If the gain is increased further, the integrator poles are drawn together and 
become complex conjugates. This in turn creates another modal oscillation which is 
slower than the Phugoid. This extra mode is undesirable, so we stop the integrated feed 
back at  . The final system is described as: 

22pk 610×

22ik

22

51 1 10.ik = ×
 
• Phugoid poles:  -0.2927   0.2836i±
• Thrust integrator pole : -0.1020 
• Lift coefficient integrator pole: -0.2179 
• Modal properties:  0.7182pζ =  0 407rad. /p secω =  
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Figure 4.20.  Simulation of a commanded 1000ft/min climb rate using the final controller for region 7 

The final system is shown simulating a commanded altitude rate of 1000 ft/min in Figure 
4.20. Note that with the addition of thrust feedback, the throttle is adjusted 
simultaneously to maintain the desired speed. 
 
As with the other regions, the exercise of successive loop closures is useful but not 
practical for the task of scheduling many different conditions. Therefore, an automated 
approach is developed. With the addition of throttle feedback, the problem becomes 
much more complex. Again, we will substitute place holders into the LTD system to 
make the algebra more manageable. 
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We need to close the loops around the throttle and the lift coefficient.  The control law is 
summarized as 
 

       

( )
( )
( )
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L i d

p p d

i i d

C k h h
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& &

& &C k    

 
The closed loop A-matrix,  is, clA = A - BKC
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The characteristic equation of the closed-loop A-matrix is, 
 

 -112- 



[ ]

21 14

14

14

21

11 12 11 12 11 42 11 12

21 21 42 21

42

11

0
det det

0 0

0 0

p p

p

i

i

s a b c k a b c k b b

a s b c k b
s

c k s

c k s

− + − + − − 
 

− + − =  
 
  

clI - A   (4.27) 

 
Simplifying Equation (4.27), 
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The equation is of the form, 
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The coefficients of the characteristic equation are shown below.  
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Since we have four gains and four coefficients, we are able to arbitrarily place the poles.  
Because the algebra is complex in the solution of these equations, we simplify the 
equations with following substitutions. 
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Finally, we have the following system of equations.  
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Several techniques were tried to determine the best way to solve these equations. One 
method, the Newton-Raphson method was originally employed but was finally discarded 
because convergence was not guaranteed and it was computationally intensive. Other 
more sophisticated routines were also tried. Furthermore, optimal control techniques 
were explored where the Bass-Guru approach was discarded completely and replaced 
with a linear quadratic design using output feedback with cost function minimized using 
the Simplex algorithm.  In the end, algebra was used to extract as much information from 
the system of equations as possible and then a simple iterative routine was created to 
determine a solution. This method proved to be satisfactory and is now outlined. 

 
First, we can simplify the C  equation. 3′
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adding 2C′  to 3C′ , 
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We end up with a quadratic equation in terms of  where k is a term in the 
coefficients as shown in Equation (4.28). 
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Using , , and C  we can get in terms of  as shown in Equation (4.29) . 5C′ 4C′ 2′ 21ik

14pk
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Since we know that  is always positive and on the order of 10

14pk 4− , a simple iteration 
algorithm was developed that begins with an initial k , calculates a using Equation 
(4.29), and then tests the solution using Equation (4.28). Generally, the method yields 
two sets of workable gains. The solution chosen of the two workable sets is the solution 
with the lowest throttle gains.  This way the throttle is modulated the least.  

14p 21ik
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5 The Supporting Functional Logic of the Longitudinal 
Control System 

In the previous chapter, we developed the feedback control algorithms that stabilize the 
aircraft and drive it to the desired condition. The result was our basic, linear control 
model, equation (4.2), which can be expressed in matrix/operator notation as,  
 
 u = Ke (5.1) 
 
where u is the control vector (in our case, lift coefficient and thrust), e is the output error 
vector (which contains the indicated airspeed, Mach number, altitude, and altitude rate), 
and K is the constant matrix operator of proportional, integral, and feedback gains. Our 
goal is to squeeze standard piloting strategies into that basic, linear model and use it to 
control our non-linear dynamics. 
 
But a basic, linear control model is too simple to capture the complexities of piloting an 
aircraft throughout its entire flight envelope. In general, a pilot will provide different 
control inputs for a given error vector based on the flight regime. As an illustration of the 
different piloting strategies used in different flight regimes, consider the following. 
 

• During take-off, the pilot sets take-off thrust and a nominal stick location and 
holds them constant until the aircraft reaches its rotation speed. 

• In climb, the pilot fixes the thrust at climb thrust and uses the control stick to 
capture either airspeed or altitude rate. 

• In descent, the pilot fixes the thrust at descent thrust and uses the control stick to 
capture either airspeed or altitude rate. Our linear controller may be able to use 
the same lift coefficient controller as for climbs, but the fixed thrust value is 
different. 

• In steady, level flight, the pilot uses the throttle to hold the airspeed at the desired 
value and the control stick to hold the altitude. 

 
So there are cases in which there is no modulation of control inputs at all, cases in which 
only one control parameter is modulated, and cases in which they are both modulated. 
Since different flight regimes require different control strategies, we will need to develop 
a basic, linear controller for each flight regime. The purpose of this chapter is to define 
these different flight regimes, or regions, and the conditions that bound them, and to 
develop the algorithms for determining the desired condition within those regions. 
 
In the previous chapter, we introduced the concept of the desired output. Because our 
system uses multiple regions and multiple controllers, we need to differentiate between 
the desired output that each mathematical controller sees and the commanded output that 
the system (in the real world this would be the pilot) is trying to attain. The commanded 
output, yc, typically comes from the user interface. Each region will use supporting 
functional logic to select a time-varying desired output, yd(t), that defines a “path” to the 
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commanded output, yc. The desired output is then passed to the region’s controller and 
the controller determines the control inputs needed to follow that path. 
 

5.1 Control Strategies 
In this section, we briefly revisit the discussions of the previous chapter on the different 
control strategies used for different phases of flight and explicitly state the control law 
used for each. 
 

5.1.1 Feeding Back Altitude Rate Only 
A pilot will accomplish speed changes in level flight typically by fixing the throttle 
appropriately (advanced for speed increase, reduced for speed decrease) and using the 
control stick to maintain level flight. To insure that the aircraft stays in level flight, the 
pilot will rely primarily on the altimeter and the attitude indicator. In a sense, he is using 
feedback control on his altitude rate (with a desired rate of zero) and allowing the aircraft 
to accelerate (or decelerate). 
 
The pilot can also use the control stick to gain a balance of airspeed acceleration and 
vertical speed. This amounts to dividing the changing total energy between changes in 
potential and kinetic energy. It is also possible to exchange potential and kinetic energy 
without affecting the aircraft’s total energy much at all (e.g., descending and 
accelerating). By adjusting the control stick, the pilot can control how much energy goes 
to changing airspeed and how much goes to changing altitude. 
 
The NextGen simulator can use altitude-rate-only feedback to accomplish speed and/or 
altitude changes in any combination using this control strategy. The only thing left to do 
is determine the desired altitude rate, . For altitude-rate-only feedback, equation (5.1) 
becomes  

dh&

 
 ( ) ( ) ( )( ) ( ) ( )( ) ( )

14 14 14L p d i d bC t k h t h t k h t h t dt k h t= − + − −∫& & & & &  (5.2) 

 

5.1.2 Feeding Back Speed Only 
Climbs and descents at constant airspeed are also typically accomplished without much 
modulation of the throttle. For climbs the throttle is advanced to the desired climb power, 
and for descents the power is reduced to idle.  The control stick is then adjusted to 
maintain the proper airspeed while the altitude is allowed to change.  The pilot uses 
information from the airspeed (or Mach) indicator to adjust the control stick to maintain 
speed. This type of control is fundamentally different from the speed change in level 
flight because the control stick is now controlling speed instead of altitude rate. Likewise, 
the throttle is controlling the climb rate of the aircraft. Notice that this amounts to a 
reversal in the roles of the two controls. 
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The NextGen simulator can use speed-only feedback to accomplish altitude changes 
using this control strategy. The only thing left to do is determine the desired speed, VIAS, 
or Mach number, M. For indicated airspeed feedback, equation (5.1) becomes  
 
 ( ) ( ) ( )( ) ( ) ( )( ) ( )

11 11 11d dL p IAS IAS i IAS IAS b IASC t k V t V t k V t V t dt k V t= − + − −∫  (5.3) 

 
and for Mach feedback, equation (5.1) becomes  
 
 ( ) ( ) ( )( ) ( ) ( )( ) ( )

12 12 12L p d i d bC t k M t M t k M t M t dt k M t= − + − −∫  (5.4) 
 

5.1.3 Feeding Back Speed and Altitude Rate 
A pilot will maintain steady, level flight typically by using the control stick to fly level 
and adjusting the throttle to hold the desired speed. To insure that the aircraft stays in 
level flight, the pilot will monitor the altimeter and the attitude indicator. To insure that 
the aircraft holds speed, the pilot will monitor the airspeed (or Mach) indicator.  
 
The NextGen simulator can use this strategy to maintain steady, level flight, to fly a 
constant vertical speed at a specified airspeed, or to follow a specific speed-altitude 
profile, as on approach and landing. The only thing left to do is determine the desired 
speed and altitude rate. For IAS-based control, equation (5.1) becomes  
 

 
( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( )( ) ( )
14 14 14

21 21 21d d

L p d i d b

p IAS IAS i IAS IAS b IAS

C t k h t h t k h t h t dt k h t

T t k V t V t k V t V t dt k V t

= − + − −

= − + − −

∫
∫

& & & & &

 (5.5) 

 
and for Mach feedback, equation (5.1) becomes  
 

 
( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( )( ) ( )
14 14 14

22 22 22

L p d i d b

p d i d b

C t k h t h t k h t h t dt k h t

T t k M t M t k M t M t dt k M t

= − + − −

= − + − −

∫
∫

& & & & &

 (5.6) 

 

5.1.4 Altitude Capture 
Capturing altitude is a fundamental function that the longitudinal dynamics must 
perform; however, altitude is never a feedback parameter directly. Instead altitude rate is 
commanded in a manner such that altitude capture is obtained. Initially it was not clear 
that this was the best solution to the problem. In fact many direct altitude feedback 
strategies were tried, and the state space model still allows for altitude feedback. 
However, instead of direct altitude feedback, the altitude error is used to determine an 
appropriate value for , the desired altitude rate. The reason for this decision is based 
primarily on the need for a smooth transition between a control region that does not 
control altitude rate, and one that does. 

dh&
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Figure 5.1: Illustration of an aircraft capturing an altitude 

 
For regions in which the altitude rate is captured, the desired altitude rate is calculated by 
applying a gain to the difference between the desired altitude and the actual altitude. 
 

( )d dhh K h h= −&
&     (5.7) 

 
We set a nominal value of 17hK min=& . Figure 5.1 shows how the descent rate varies 

over the final 70 feet and the smooth capture of the altitude when 7hK =& . 
 
There is still a problem to contend with at region transition. Consider an aircraft in, 
descent at idle throttle at a specified airspeed as shown in Figure 5.2. Since there is no 
direct control over the rate of descent, the aircraft descends at whatever rate is required to 
maintain the commanded airspeed with an idle throttle. There is likely to be an undesired 
transient when the aircraft makes the transition to a region with controlled altitude rate. 
The cause of the undesirable transient is the fact that the aircraft’s altitude rate upon 
entering the new region and the desired altitude rate derived from Equation (5.7) do not 
necessarily match. The mismatch causes the control law to drive this initial ‘error’ to zero 
with excessive control inputs. Figure 5.2 shows the mismatch and the sudden increase in 
the descent rate. 
 
To solve this problem, the initial desired altitude rate is set equal to the aircraft’s current 
altitude rate. The measured (current) altitude and altitude rate are used to calculate the 
value of  by rearranging Equation (5.7). hK &

 

( )initial

current
h

d current

hK
h h

=
−&

&
     (5.8) 
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Figure 5.2: Altitude Rate During Region Transition 
 
When the aircraft is within 70 feet of the target altitude,  is returned to its nominal 
value of seven regardless of the initial calculated value. Seventy feet is chosen because it 
yields an altitude rate near 500 fpm, a standard value within the simulator. This change in 

 does yield an unrealistic jump in the altitude rate just before altitude capture but it is 
much smaller than at region transition and it ensures that the altitude is captured in a 
timely manner. It also prevents the previous descent or climb from affecting the 
continuing cruise performance of the aircraft that would come from preserving either an 
unusually low or high .  Figure 5.3 shows the logic for calculating  

hK &

hK &

hK & hK &

5.1.5 Speed Capture 
The feedback control laws were derived for small errors. In the steady-state control 
region, which uses speed control, the speed error is never more than 10 knots. This is a 
suitable speed to keep the control inputs from being excessive. But in the climb and 
descent regions, which also use speed control, it is possible for the speed error to be 100 
knots or more. Our controller would produce excessive control inputs to correct this 
error. 
 
To avoid these excessive control inputs, we must devise a varying desired speed profile 
that will produce acceptable control inputs and speed rates. A constant desired 
acceleration of one knot per second was chosen for its simplicity and suitability in 
producing an acceptable transient response. The initial desired speed upon entering a 
speed-controlled region is the actual speed. 
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Figure 5.3. Flow diagram for calculating  
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= + ∆&
 (5.9) 

 
where 
 
 ( ) ( )1 * sign

d cIAS IAS IAS
ktV Vsec= −& V  

 
The function sign(x) returns +1 if x ≥ 0 and -1 otherwise. Once the indicated airspeed is 
within five knots of the commanded value, the desired speed is simply the commanded 
speed. 
 
For Mach control, the equations for desired Mach are similar. A constant desired 
acceleration of 0.02 Mach per second is selected. It is equivalent to an acceleration of one 
knot per second at 25,000 feet altitude and 300 knots. 
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d d d

M M

M M M t

=

= + ∆&
 (5.10) 

 
where 
 
 ( ) ( )10.02 * signd cM M Msec= −&  

 

5.2 Dividing the Flight Envelope into Regions 
Because of the need for different controllers and different supporting logic in different 
regimes of the flight envelope, we need to divide the flight envelope into regions. Each 
region’s control law, supporting logic, and desired output reflect the pilot’s decision logic 
in bringing the aircraft from its actual state to its desired state. 
 
All of the supporting functional logic for the longitudinal control system centers on the 
concept of the speed-altitude plane. The speed-altitude plane was used by Mukai [Mu92] 
during the development of Pseudocontrol, the original control system developed for the 
Pseudo Aircraft Simulation (PAS) system developed for NASA Ames. The speed-altitude 
plane has been revisited and adapted for the TGF project and has undergone extensive 
modification since it was used in PAS.  
 

A
lti

tu
de

 e
rr

or
 (f

t) 

0

0

IAS error (kts) 
 

 

Figure 5.4. The Speed-Altitude Plane 
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5.2.1 The Speed-Altitude Plane 
The speed-altitude plane is used to represent the aircraft’s actual position relative to its 
commanded position, with altitude error plotted on the vertical axis and speed error 
plotted on the horizontal axis. It allows us to split the aircraft’s en route flight envelope 
into different control regions. A diagram of the speed-altitude plane is shown in Figure 
5.4. 
 
The basic purpose of the speed-altitude plane is to emulate the way a pilot makes 
decisions about flying an aircraft. We define an area in the immediate vicinity of the 
commanded condition in which the aircraft is in steady, level flight. We set up speed 
error and altitude error bounds to define this steady, level flight region. We then need to 
define what to do outside of these bounds in order to bring the aircraft within them. 
 
The speed-altitude plane provides a means of generalizing these relationships and also 
provides insight into what the throttle setting should be based on the aircraft’s current 
energy level. 
 

5.2.1.1 The Line of Constant Energy 
The line of constant energy illustrates how an aircraft can have the same energy level at 
different speeds and altitudes. It is a means of determining whether the aircraft is low on 
energy or high on energy with respect to its commanded condition; that is, does the 
aircraft need to add thrust or reduce thrust to attain the commanded condition. Originally, 
the line of constant energy was based on true energy calculations for the aircraft but as it 
evolved it became simply a gross representation of the aircraft’s energy. This section 
discusses the evolution of the line of constant energy.  
 
The total energy of an aircraft is the sum of its potential and kinetic energies. 
 

E = K.E. + P.E. = mgh + ½ mVa
2 

 
The terms are defined as follows: 
 
• E: The total aircraft energy 
• m:  The aircraft mass 
• g:   The gravitational acceleration 
• h:   The altitude 
• Va:  The true airspeed 
 
The equation can also be written in terms of the energy per unit mass. 
 
 e = gh + ½ Va

2 (5.11) 
 
The energy that the aircraft would have at some commanded state can be written 
similarly, 
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 21
2 cc c ae gh V= +  (5.12) 

 
where ec is the total energy at the commanded state, hc is the commanded altitude, and 

 is the commanded true airspeed. Notice that it is quite possible for e
caV c = e without the 

aircraft actually being at the commanded state.  That is to say, the aircraft could have the 
right amount of energy but be either fast and low or high and slow. This is illustrated in 
Figure 5.5 which shows the line of constant energy. The x- and y-axes on Figure 5.5 are 
the speed error and altitude error from some commanded state shown at the point (0,0). 
 
If the aircraft’s current state lies on the constant energy line, the aircraft already has 
enough energy to attain the commanded state. Therefore, the amount of throttle 
adjustment needed is minimal. However, if the aircraft lies below the constant energy 
line, the aircraft needs energy to attain the commanded state. Likewise, if the aircraft is 
above the energy line, the aircraft has excess energy and must lose energy to achieve the 
commanded state.  
 
The constant energy curve is a parabola, as illustrated by the quadratic relationship 
between altitude and speed in equation (5.11). For practical control implementation, 
linear approximation to the constant energy curve in the speed-altitude plane is used, as 
shown in Figure 5.5. However, even this approximation is simplified because of 
transition problems between regions. The final form of the line of constant energy 
approximates the actual energy curve by forming a diagonal across the steady, level flight 
region, as shown in Figure 5.6.  
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Figure 5.5. The constant energy line on the speed-altitude plane 
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Figure 5.6.  Illustration of the approximation for the constant energy line using the diagonal cut across the 
steady, level flight region (region 7) of the speed-altitude plane 

 

5.2.1.2 Bounding the Speed-Altitude Plane 
The speed error bound on the steady, level flight region is 10 knots. The simulation 
engineers chose this value because it is a bound typically used in real flight; an aircraft 
within ten knots of a controller-assigned speed is considered to be in compliance with 
that speed. The simulation engineers chose the altitude error bounds so that the slope of 
the diagonal of the steady, level flight region is the same as the slope of the constant 
energy line in the vicinity of a flight condition that is representative of en route flight: 
300 knots IAS @ 25,000 ft.  
 
At 25,000 feet altitude in the standard atmosphere, 300 knots IAS corresponds to 728 fps 
true airspeed (TAS) and a ten knot IAS speed difference corresponds to about a 22 fps 
speed difference in TAS. The slope of the constant energy curve at this point is given by 
the derivative of equation (5.11). Assuming that gravity is constant, 
 

 
( ) ( ) 21

2 a

a a

d e d gh d V

de g dh V dV

 = +  
 

= +
 

 
Using discrete notation, and substituting in the values corresponding to our speed change 
and flight condition, we can calculate the corresponding altitude change that would keep 
the total energy constant. 
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 ( ) ( ) ( )( )20 32.2 728 22

497

a ae g h V V
ft fth s ss

fth s

∆ = ∆ + ∆

= ∆ +

∆ =

ft  

 
We choose to round to 500 feet for the altitude error. 
 
The parameters needed to define the regions of the speed-altitude plane are the speed 
error, altitude error, and slope of the constant energy line. These parameters nominally 
are set as follows: 
 
• herror:  This is the altitude error used to bound the steady, level flight region and, 

consequently, the slope of the constant energy line of the speed-altitude plane. The 
nominal value is 500 feet. 

• SPerror:  This is the speed error used to bound the steady, level flight region. It needs 
to be defined in terms of knots for IAS-based control and in terms of Mach number 
for Mach-based control. 
• IAS-based:  SPerror = IASerror  = 10 knots. Aircraft are typically expected to hold 

their speeds within 10 knots. 
• Mach-based:  SPerror = Merror  = 0.022. This is the Mach error used to bound the 

steady, level flight region in the Mach speed-altitude plane. The value 
corresponds to a 10 knot IAS speed change at 300 knots IAS and 25,000 feet in 
the standard atmosphere. 

 
For complete definition, the speed-altitude plane also requires the slope of the diagonal 
line that roughly approximates the aircraft’s energy relative to its commanded state. 
There are two slopes: one is for Mach-based control, and the other is for IAS-based 
control. 
 

 error
IAS

error

hm
IAS
−

=  (5.13) 

 

 error
Mach

error

hm
M
−

=  (5.14) 

5.2.1.3 The Regions of the Speed-Altitude Plane 
The speed-altitude plane is divided into nine different regions. Each region has a different 
combination of control law and supporting functional logic.  The speed error on the 
speed-altitude plane is either represented in knots of indicated airspeed or in Mach 
number. Figure 5.7 shows the regions of the speed-altitude plane in terms of indicated 
airspeed. The regions are enumerated below with their various functions. 
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Figure 5.7. The speed-altitude plane in terms of indicated airspeed 

 
• Steady, Level Flight (Region 7): In Region 7, the aircraft is sufficiently close to 

converging on a desired state. The pilot modulates the control stick and the throttle 
simultaneously to capture the desired state. 

• Climbing & Accelerating (Region 1):  In Region 1, the aircraft is low and slow and 
is, therefore, low on energy. The throttle is set to full and the pilot climbs and 
accelerates the aircraft, using the control stick to maintain a balance of airspeed 
acceleration and climb rate. 

• Level Acceleration (Region 2):  In Region 2, the aircraft is slow enough to be low 
on energy; therefore, the throttle is set to full. The pilot uses the control stick to 
capture and maintain the desired altitude while accelerating into Region 7. Region 25 
(Descending & Accelerating) is a subset of Region 2 that uses a constant desired 
altitude rate. 

• Steady Descent (Region 3):  In Region 3, the aircraft is high enough to have excess 
energy; therefore, the throttle is set to idle. The pilot uses the control stick to capture 
and maintain the desired speed while descending into Region 7. 

• Descending & Decelerating (Region 4):  In Region 4, the aircraft is high and fast 
and is, therefore, high on energy. The throttle is set to idle and the pilot descends and 
decelerates the aircraft, using the control stick to maintain a balance of airspeed 
deceleration and descent rate that is weighted towards descending. 
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• Level Deceleration (Region 5):  In Region 5, the aircraft is fast enough to have 
excess energy; therefore, the throttle is set to idle. The pilot uses the control stick to 
capture and maintain the desired altitude while decelerating into Region 7. Region 55 
(Climbing & Decelerating) is a subset of Region 5 that uses a constant desired 
altitude rate. 

• Steady Climb (Region 6): In Region 6, the aircraft is low enough to be low on 
energy; therefore, the throttle is set to full. The pilot uses the control stick to capture 
and maintain the desired speed while climbing into Region 7. 

 
The reader should notice a similarity between the basic strategy in each of the regions 
and the discussion of Section 4.1.1, where the basic piloting strategies for different types 
of maneuvers are outlined. The speed-altitude plane is a means of mechanizing the 
control strategy that a pilot would use depending on the aircraft’s state relative to the 
commanded state.  
 

5.2.1.4 Region Management in the Speed-Altitude Plane 
The error between the aircraft’s commanded and actual states is compared to the error 
bounds of the speed-altitude plane. This determines the aircraft’s control region in the 
speed-altitude plane. The absolute errors between the aircraft’s actual and commanded 
states, e1 through e4, are defined below. 
 
 1 IASc IASe V V= −  (5.15) 
 2 ce M M= −  (5.16) 
 3 ce h h= −  (5.17) 

 4 ce h h= −& &  (5.18) 
 
The terms are defined as follows: 
 
• :  The commanded indicated airspeed (kts) IAScV
• VIAS:   The actual indicated airspeed (kts) 
• Mc:    The commanded Mach number 
• M:     The actual Mach number 
• hc:      The commanded altitude (ft) 
• h:       The actual altitude (ft) 
• :      The commanded altitude rate (ft/min) ch&

• :        The actual altitude rate (ft/min) h&
 
We can use Boolean expressions to define four true-false parameters that coincide with 
the bounds and definitions of the speed-altitude plane. These are used to aid the flow 
algorithm (illustrated below) that determines which region logic to use. For example, if 
the commanded speed is more than ten knots below the actual speed, the aircraft is 
defined to be fast. These speed-altitude plane Booleans are defined in Table 5.1. 
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low 3 errore h>  
high 3 errore h< −  
slow s errore SP>  
fast s errore SP< −  

lowenergy ( )3 * se m e>  

Table 5.1:  Speed - Altitude Plane Booleans 
 
This section describes the control strategies and supporting functional logic used in each 
of the regions of the speed-altitude plane. 

5.2.1.4.1 Steady, Level Flight (Region 7) 
Region 7 is the most highly used region because it represents the aircraft at or near 
steady, level flight. The aircraft is close enough to a desired state that our linear controller 
can capture that state without excessive control inputs. Both the lift coefficient and the 
thrust are controlled. The control law is given by equations (5.5) and (5.6) for IAS-based 
and Mach-based control, respectively. The desired altitude rate is given by equation (5.7) 
and the desired speed is given by equations (5.9) and (5.10) for IAS-based and Mach-
based control, respectively. 
 

5.2.1.4.2 Accelerating (Region 2) 
In Region 2, the aircraft is slow enough to be low on energy, but it may be above or 
below its commanded altitude. Because the aircraft is low on energy, the throttle is 
advanced to full throttle. The system uses the lift coefficient to capture and maintain the 
desired altitude rate while accelerating into Region 7. The control law is given by 
equation (5.2) with the desired altitude rate given by equation (5.7) (the same as for 
Region 7).  
 

5.2.1.4.3 Descending & Accelerating (Region 25) 
Region 25 is a subset of Region 2 that uses a constant descent rate; that is, the greater of 
its current descent rate and a 500 fpm descent rate. (Note the use of the min function 
because we are working with negative numbers.) 
 
 ( )min , 500dh h f= −& & pm  

 

5.2.1.4.4 Decelerating (Region 5) 
In Region 5, the aircraft is fast enough to be high on energy, but it may be above or 
below its commanded altitude. It has more energy than it needs so the throttle is reduced 
to idle. It is the same as Region 2 except for the throttle setting.  The system uses the lift 
coefficient to capture and maintain the desired altitude rate while decelerating into 
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Region 7. The control law is given by equation (5.2) with the desired altitude rate given 
by equation (5.7) (the same as for Region 7).  
 

5.2.1.4.5 Climbing & Decelerating (Region 55) 
Region 55 is a subset of Region 5 that uses a constant descent rate; that is, the greater of 
its current altitude rate and 500 fpm. 
 
 ( )max ,500dh h f=& & pm  

 

5.2.1.4.6 Descending (Region 3) 
In Region 3, the aircraft is high enough to be high on energy. It may be above or below 
its desired speed. Because the aircraft is high on energy, the thrust is set to idle. The 
aircraft uses lift coefficient control to capture its desired speed while descending into 
Region 7. The control law is given by equation (5.3) and equation (5.4) for IAS-based 
and Mach-based control, respectively. The desired speed is given by equations (5.9) and 
(5.10) for IAS-based and Mach-based control, respectively. 
 

5.2.1.4.7 Climbing (Region 6) 
In Region 6, the aircraft is low enough to be low on energy. It may be above or below its 
desired speed. Because the aircraft is low on energy, the thrust is set to full. The aircraft 
uses lift coefficient control to capture its desired speed while climbing into Region 7. The 
control law is given by equation (5.3) and equation (5.4) for IAS-based and Mach-based 
control, respectively. The desired speed is given by equations (5.9) and (5.10) for IAS-
based and Mach-based control, respectively. 
 

5.2.1.4.8 Climbing & Accelerating (Region 1) 
In Region 1, the aircraft is low and slow and is, therefore, low on energy. The throttle is 
set to full and the system uses altitude rate feedback to maintain a balance of airspeed 
acceleration and climb rate that is weighted towards acceleration. The control law is 
given by equation (5.2). 
 
Since the system uses altitude rate feedback, we need to determine the desired altitude 
rate that will yield the balance of airspeed acceleration and climb rate mentioned above. 
With the throttle set to full, the aircraft’s thrust is typically greater than its drag. This 
means that the aircraft’s total energy is increasing. We need to determine how much of 
this energy increase goes towards accelerating and how much goes towards climbing. An 
equation relating acceleration and altitude rate is given by equation (2.59), 
 

 sina
a

T D T D hV g
m m

γ− −
= − = −

&
& g

V
 (2.59) 
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which can be written in the form of the changing energy.  
 

 ( ) a
a a

T D V
gh V V

m
−

= +& &  (5.19) 

 
Note that this equation is presented in BADA as equation (3.1-1). Note also that this 
equation is the time derivative of equation (5.11). We can rewrite this equation to express 
an aircraft’s desired altitude rate in terms of an energy ratio, ER. 
 

 ( ) ( )
( )1

1

a
d

a a

T D V T D V
h

mg ERV Vmg
gh

− −
= =

+ 
+ 

 

&
&

&

a  (5.20) 

 
The energy ratio, ER, is an expression of the ratio of changing kinetic energy to changing 
potential energy. We can use it to express how much of the changing energy (i.e., the 
thrust energy being added to the system) goes towards changing speed and how much 
goes towards changing altitude. BADA uses the same approach, but expresses equation 
(5.20) in terms of an energy share factor as a function of Mach number. For acceleration 
in climb, BADA recommends an energy share factor that corresponds to an energy ratio 
of ER = 2.3, and that is what we use for our controller. With the desired altitude rate 
determined by equation (5.20) we can use an altitude rate controller to capture that 
altitude rate. 
 

5.2.1.4.9 Descending & Decelerating (Region 4) 
In Region 4, the aircraft is high and fast and is, therefore, high on energy. The throttle is 
set to idle and the system uses altitude rate feedback to maintain a balance of airspeed 
deceleration and descent rate that is weighted towards the descent. The control law is 
given by equation (5.2). 
 
Just as in Region 1, we need to determine the desired altitude rate that will yield the 
balance of changing airspeed and altitude. For deceleration in descent, BADA 
recommends an energy share factor that corresponds to an energy ratio of ER = 2.3; 
however, our tests have shown that an energy ratio of ER = 1.0 is more suitable. To 
determine the desired altitude rate for Region 4, we use equation (5.20) with the throttle 
set to idle thrust and the energy ratio set to ER = 1.0. 
 

5.2.1.5 Constant Vertical Speed Mode – Region 8 
The aircraft operates in Region 8 when a vertical speed is commanded. For constant 
vertical speed, the pilot uses throttle to capture the desired airspeed and control stick to 
capture the desired altitude rate. The control law is given by equation (5.5) and equation 
(5.6) for IAS-based and Mach-based control, respectively. The aircraft is bumped into 
speed-altitude plane management if it cannot maintain the desired airspeed within SPerror. 
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The desired speed is given by equations (5.9) and (5.10) for IAS-based and Mach-based 
control, respectively. 

5.2.2 Taking off 
If an aircraft is initiated in the simulation as a take-off, the guidance module generates a 
sequence of legs that will take the aircraft to its low-altitude cruising speed and 6000 feet 
altitude. That sequence is the take-off ground run, rotation, lift-off, initial climb, and 
cruise at 6000 feet altitude. The take-off ground run, rotation, and lift-off legs are the 
“take-off” legs. An aircraft cannot enter either of these legs unless it is initiated as a take-
off and it must successively satisfy the boundary conditions of each leg to progress into 
the initial climb. Additionally, these legs use their own controllers and are, therefore, 
given their own regions. The initial climb and level cruise legs use the region 
management of the speed-altitude plane. 

5.2.2.1 Take-Off Ground Run (Region 12) 
The take-off ground run region uses an open-loop controller to accelerate the aircraft 
until it is within ∆VR of its rotation speed while keeping on the ground. The region 
specifies constant control inputs. A lift coefficient of zero is specified to keep the aircraft 
from lifting off during the ground run and take-off thrust is specified to give the aircraft 
its maximum acceleration. 
 

 
max

0

TO

L

T

C
T C T

=
=

 (5.21) 

 
Boundary Condition:  VIAS < VR - ∆VR  
 
The constant ∆VR is defined the same for all aircraft. It represents the speed at which the 
simulated aircraft enters the rotation region, region 13. Conceptually, it is intended to 
represent the increment below rotations speed at which the pilot begins to pull back on 
the control stick to lift off the runway. Its value in NextGen is selected so as to provide 
ample time for the controller of region 13 to ramp up to the aircraft’s rotation lift 
coefficient. 
 
     ∆VR = 20 knots  
 

5.2.2.2 Rotation (Region 13) 
The sole purpose of the rotation region is to ramp the lift coefficient up from zero to the 
aircraft’s rotation lift coefficient as a function of speed. At first look, this requires an 
open-loop controller that ramps the lift coefficient between these two points as a function 
of time, but this would require a unique controller form. NextGen programmers and 
engineers decided that it would be easiest to implement a controller of the same form as 
all the other controllers, i.e., of the form of equation (5.1). This requires the development 
of gains that cause the feedback controller to mimic our desired open-loop behavior. 
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Equation (5.1) is a shortened form of equation (4.2), which is rewritten here. 
 

 ( ) ( ) ( ) ( )t t t∫
t

p i b0
u = K e + K e dt - K ty  (4.2) 

 
We desire lift coefficient behavior that increases steadily. Since indicated airspeed 
increases with time during the ground run, we simplify our controller by selecting that 
output only. We also specify that the desired speed is the rotation speed throughout the 
region. The single input, single output (SISO) system is then, 
 

  (5.22) ( )( ) ( )( ) ( )( ) ( )
11 11 11L IAS p R IAS i R IAS b IASC V t k V V t k V V t dt k V t− −∫

t

0
= + -

 
The lift coefficient needed to lift the aircraft off the runway at rotation speed is dubbed 
the rotation lift coefficient. 
 

 
21

2
RL

R

WC
V Sρ

=  

 
We would like the lift coefficient to change from zero at the beginning of region 13 to the 
rotation lift coefficient when the aircraft reaches its rotation speed. At rotation speed, we 
want the rate of change of the lift coefficient with speed to flatten out so that we don’t 
overshoot it and impose undo drag on the aircraft. We, therefore, specify the following 
conditions for our controller. 
 
 CL(VR - ∆VR) = 0  
 CL(VR) = 

RLC  

 ( )( ) 0L R
IAS

d C V
dV

=  

 
The bound of region 13 is defined by aircraft speed only. Once the aircraft speed is 
greater than the rotation speed, control is passed to region 14. A lower bound is not 
specified; once control is passed from region 12, the aircraft stays within region 13 until 
the boundary condition is satisfied. 
 
Boundary Condition:  VIAS ≤ VR  
 
 
To simplify integration, we assume the indicated airspeed in region 13 has constant 
acceleration; i.e., it is of the following form. 
 
 ( )IAS IAS IASV V t V constant= =& &  (5.23) 
 
We transform equations (5.22) and (5.23) into functions of the indicated airspeed. 
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We now have an equation relating the lift coefficient to the indicated airspeed. 
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The derivative of equation (5.24) is, 
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The initial conditions plugged into equations (5.24) and (5.25) yield the following 
equations. 
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This system yields the following solution for our region 13 controller. 
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The region 13 controller is given by equation (5.22). 
 

5.2.2.3 Lift-Off (Region 14) 
When the aircraft reaches its rotation speed, the pilot pulls back on the control stick to lift 
off the runway, but maintains take-off thrust and take-off flaps. He uses this 
configuration until he reaches the maneuver altitude. NextGen operates similarly: control 
is passed to region 14 at rotation speed and the aircraft remains in region 14 control until 
it reaches its maneuver altitude, set to 400 feet AGL in NextGen. Therefore, we need a 
controller that returns take-off thrust and uses the lift coefficient to control speed. In this 
sense, region 14 is similar to region 6 (constant speed climbs) except that it uses take-off 
thrust.  
 

 maxTOT

d R

T C T

V V

=

=
 

 
Boundary Condition:  h ≤ 400 ft AGL  
 
The controller is given by equation (5.3). Additionally, as soon as we enter this region, 
we can raise the landing gear, which amounts to removing the gear drag coefficient 

gearDC  
from the drag equation. 

5.2.3 Landing Region Management 
An aircraft that has received the command to begin the landing sequence will remain in 
the speed-altitude plane regions until it reaches its glide slope. Once the aircraft reaches 
the glide slope, it begins the landing sequence and progresses through regions 9, 10, and 
11. A new commanded altitude will move control back to the speed-altitude plane 
manager (i.e., landing is aborted). It is assumed that Mach-based control is not used for 
any landing maneuver, so Mach-based controllers are not considered. 
 

5.2.3.1 Approach (Region 9) 
Because the aircraft is following the glide slope (a linear altitude profile) and a preferred 
speed profile, it needs a controller that feeds back speed and altitude rate. The control law 
is given by equation (5.5). 
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The only difference is in the development of the desired output. Region 9 specifies the 
aircraft’s speed profile as a function of distance from the runway threshold. Alternatively, 
the aircraft can be speed restricted with a commanded speed. Either way, region 9 
specifies a desired altitude rate that will have the aircraft descend along the glide slope. 
 
The guidance module defines the altitude profile based on the aircraft’s distance from the 
glide slope antenna of its assigned runway. The guidance module defines a distance, dGS, 
as the distance parallel to the runway from the glide slope antenna to the aircraft. The 
aircraft’s desired altitude is a function of that distance and the angle of the glide slope 
antenna’s signal, γGS. 
 
 tand GS GS Gh h d Sγ= =  (5.27) 
 
The aircraft’s desired altitude rate must consider the local glide slope altitude as well as 
the aircraft’s altitude relative to the glide slope. As in Region 7, equation (5.7) is used to 
determine the altitude that would correct the aircraft’s altitude error, but we must also 
consider that the desired altitude is changing per equation (5.27). We add the derivative 
of equation (5.27) to equation (5.7) to get the desired altitude rate for Region 9. 
 

 ( ) ( ) tand d GSh

dh K h h d
dt GSγ= − +&

&  

 
The time derivative of the aircraft’s distance from the runway threshold is the aircraft’s 
groundspeed projected into the plane of the localizer. If we assume that the aircraft 
captures the localizer at the same time as the glide slope, we needn’t concern ourselves 
with the angle between the aircraft’s ground path and the localizer. This is a reasonable 
assumption that makes the equation much simpler. 
 
 ( ) tand d Ghh K h h V GSγ= − +&

&  (5.28) 
 
The speed profile is defined as a function of the aircraft’s distance from the outer marker 
of its assigned runway. It was developed to be consistent with typical airport approach 
speed profiles. The intent is to have the aircraft at its preferred speed for descents below 
10,000 feet altitude by the time it is 20 nautical miles from the outer marker of its 
assigned runway and at 10 knots above its landing speed at the outer marker. At 10 
nautical miles from the outer marker, the aircraft should have lost 2/3 of the difference. 
The final 10 knots is bled off by the time the aircraft reaches the runway. 
 
The guidance module defines a distance, dOM, as the distance parallel to the runway from 
the outer marker to the aircraft. The guidance module then establishes an upper limit of 
the desired speed as a function of dOM. The desired speed schedule is illustrated in Figure 
5.8. The upper limit is defined by points at 20 nm out, 10 nm out, at the outer marker, and 
at the runway threshold, with linear slopes between them. The speeds are defined as 
follows: 
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Figure 5.8: Desired Landing Speed Profile 
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where Vdes,1 is defined for each aircraft in the aircraft input file. If the aircraft is within the 
shaded area of Figure 5.8, it maintains its speed until it reaches the upper limit. If it is 
outside the shaded area, its desired speed is the limit speed. 
 

5.2.4 Landing Flare (Region 10) 
When the aircraft is within 100 ft above the runway, it begins the landing flare. The 
landing flare region (region 10) is a region of heightened control sensitivity to match the 
desired flare profile. The desired profile is a quadratic relationship between height above 
the runway and desired altitude rate. It was designed to be tangent to a 3° glide slope at 
100 ft above the runway and to touch down on the runway at 1 ft/s. 
 
 ( ) ( )2

0.0011 0.22 1d rwyh h h h h= − − −&
rwy −  
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In this equation, height above the runway, (h-hrwy), is in feet and the desired altitude rate, 
, is in ft/s. The desired speed is the aircraft’s landing speed, Vdh& LD. The control law is 

given by equation (5.5). 
 

5.2.5 Landing Ground Run (Region 11) 
Once the aircraft touches down, it enters the landing ground run region (region 11). In the 
landing ground run, the thrust is throttled back to idle, the lift coefficient is set to zero, 
and the drag coefficient is increased by the spoiler coefficient (to simulate the 
deployment of the spoiler). There is no feedback control in this region. When the speed is 
20 knots below the landing speed, the aircraft is terminated from the simulation. 
 

 
max

0

idle

L

T

C
T C T

=
=

 (5.29) 

 

5.3 Throttling in Regions 1 Through 6 
When the thrust controller returns a thrust that differs from the current thrust, we must 
consider that the thrust difference may not be available in one time step; particularly 
when the difference is the full range from idle to max thrust, and particularly when the 
engine is a turbine engine. To account for this, a simple spooling lag has been added to 
the controller to limit the maximum amount that the thrust can change in a time step.  
 

max
max

lag

TT
k

∆ = ∆t      (5.30) 

 
The term klag is the lag factor. Conceptually, it is the time it takes the engine to spool 
from zero thrust to maximum thrust. While spooling is not applicable to piston engines, 
klag is still used, just at a much smaller value. The current values for the different engines 
are presented below. 
 

turbofans: klag = 20 sec 
turboprops: klag = 5 sec 
pistons: klag = 2 sec 

 
We have chosen to model engine spooling in the longitudinal control logic rather than in 
the engine. Certainly, the real turbofan aircraft has spooling in the engine; however, 
spooling in the engine would introduce a troublesome nonlinearity into the open loop 
dynamics. Such nonlinearities would undoubtedly expand the control logic and increase 
the number of gains needed, and they would require extensive engineering effort to 
develop a sufficient control law. Furthermore, the location of the spooling has no bearing 
on the perceived motion of the aircraft.  
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5.4 Aircraft Device Deployment 

5.4.1 Flaps 
For all aircraft, the flaps (or, more appropriately, high-lift devices) are modeled, as they 
are in BADA, with lift and drag coefficient values corresponding to the flap and slat 
deployment for the different wing configurations for the aircraft. The five configurations 
are cruise, initial climb, take-off, approach, and landing. The algorithm for the 
deployment of flaps is presented in Figure 5.9. Basically, takeoff flaps are deployed for 
takeoff and retracted as the aircraft climbs, and flaps are sequentially extended during the 
landing sequence. 
 

5.4.2 Speed Brakes 
Speed brakes are modeled in the simulator as an increment, C , to the profile drag 
coefficient. Speed brakes are deployed if an aircraft is asked to expedite its descent. 
Algorithms within the simulator guidance module will deploy speed brakes in the case 
that the aircraft is predicted to be unable to reach an altitude-fix restriction. Speed brakes 
may also be deployed in the landing sequence if the aircraft is well above the glide slope. 

brakesD

 

 
Figure 5.9:  Flap Deployment Algorithm 

 

5.4.3 Spoiler 
The spoiler is modeled in the simulator as an increment, 

spoilerDC , to the profile drag 
coefficient and a complete loss of lift. It is used in the Touchdown region (Region 10) 
only and is deployed immediately when the aircraft’s altitude is the same as the runway 
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altitude. Region 10 uses an open-loop controller with the thrust set to touchdown thrust 
and the lift coefficient set to zero (a consequence of spoiler deployment). 
 

5.4.4 Landing Gear 
Landing gear are modeled in the simulator as an increment, 

gearDC , to the profile drag 
coefficient. They are extended for the takeoff sequence and retracted once the aircraft 
reaches 400 feet AGL. They are also extended during the landing sequence once the 
aircraft has passed the outer marker of its assigned runway. 
 

5.4.5 Ground Braking 
When the braking function was initially conceived, it was thought that some number from 
a data file would be read into the airframe model, and an increase in drag would result 
from some static braking force. However, the aircraft data files did not have any 
information regarding braking force. Equation (5.31) is a proposed ground breaking 
model that assumes that the braking force is 30% of the aircraft’s weight. This 
approximation is convenient because it does not rely on an independent ground braking 
parameter in the aircraft data files. However, ground breaking is not currently 
implemented in the TGF simulator. 
 

0.3brake acD W=       (5.31) 
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6. The Selection of Gains 
In Section 3, we determined feedback control strategies for each of the regions in the 
speed-altitude plane. Furthermore, much effort was expended to develop a means to 
calculate acceptable gains for the different regions.  The purpose for these computational 
methods was two-fold.  First, there were many aircraft models to develop. Manually 
determining gains using root locus or bode techniques would be time consuming and 
would require a skilled controls engineer.  Secondly, it was expected that each aircraft 
would need to have a schedule of gains to provide sufficient performance throughout the 
aircraft’s flight envelope. Therefore, each aircraft would require gains to be calculated at 
many different reference conditions.  
 
However, by carefully choosing the reference flight condition, it is possible to choose 
one set of gains that will work for the aircraft’s entire flight envelope. This section 
documents the decision process that led to the final conclusion that gain scheduling 
would not be necessary. 

6.1 The Aircraft’s Flight Envelope 
For a given aircraft weight, there are generally two parameters that define the aircraft’s 
flight envelope:  altitude and airspeed. The flight envelope, shown in Figure 6.1, 
illustrates how fast and slow the aircraft can fly and how high the aircraft can fly.  
 

Airspeed

Altitude

 
Figure 6.1.  An example flight envelope 

 
Of course, as the aircraft’s weight changes, so do portions of the flight envelope of the 
aircraft; therefore, there are three parameters that affect the aircraft’s dynamic condition.  
 
In an effort to remove one of these parameters, Section 3 demonstrated that the flight 
envelope could be represented with true airspeed and lift coefficient rather than true  
airspeed, altitude and weight. The phugoid dynamics could be represented exclusively in 
terms of lift coefficient and true airspeed if a trimmed aircraft is assumed. The only term 
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that varied with weight was the thrust control derivative, which contributes to the forcing 
function of the system.  
 
Therefore, the flight envelope can be modeled as shown in  Figure 6.2. Only reasonable 
trim conditions are considered.  Figure 6.2 shows the high-weight/high-altitude and low-
weight/low-altitude stall condition boundaries, which encompass an area labeled as the 
useable range. This useable range represents all possible trim conditions for the aircraft.  
Outside of that range, the aircraft either must fly too fast, (i.e. faster than Mach 0.9) or 
must have air denser than sea level.  Note that while the Region 7 controller may use all 
of this envelope, in the other regions, the envelope is bounded on the left by the max L/D 
lift coefficient. The interesting observation here is that the useable area is rather small 
when compared to the total range of viable lift coefficients and true airspeeds.  One must 
ask the question, how much modal property variation can there be within this range?  
 
To answer this question, the aircraft’s flight envelope was represented in yet another 
way. The locus of all possible phugoid poles for the entire flight envelope was plotted on 
a single graph. The aircraft’s speed, altitude, and weight were varied encompassing the 
entire range of reasonable trim conditions. The results are shown in Figure 6.3. From the 
locus we can see three extremes. Roughly, the points are: 
 

  
Figure 6.2.  The flight envelope for a DC-9 in terms of CL and True Airspeed 
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Figure 6.3.  The locus of Phugoid poles for the entire flight envelope of a DC-9 in the clean configuration 

 
• -0.0011 ± 0.056i    0 057   0 19

pn
radω = . sec pξ = .     High lift coefficient at highest 

trimmable airspeed  
 
• -0.0074 ± 0.042i  0 043   0 17

pn
radω ξ= . sec p = .     Low lift coefficient at highest 

trimmable airspeed 
 
• -0.0062 ± 0.099i 0 099   0 063

pn
radω ξ= . sec p = .      High lift coefficient at lowest 

trimmable airspeed.  
 
While there is considerable variation in frequency and damping, it is plain to see that the 
aircraft needs an increase in damping to have acceptable modal properties.  
 

6.2 Determining Acceptable Modal Properties 
In previous sections of the document, a considerable effort was made to determine gains 
that would yield desirable transient responses for the aircraft’s phugoid dynamics. 
Generally, determining what is desirable is easy.  Most dynamic systems are considered 
to be well behaved if they have a damping ratio of 0.7 and a frequency sufficiently high 
enough to remove transients quickly.  A harder question to answer however is what 
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dynamic properties are sufficient. That is to say while it may be obvious what is 
desirable, it may not at all be obvious how to determine the range of acceptable values. 
Different types of operations may be more or less sensitive to poor uncontrolled 
dynamics. This section addresses the question of just how precisely the phugoid 
dynamics must be held to a specified set of modal properties.  
 
There is no precise answer to this question. However, from observation of the aircraft 
flying with varied modal properties, one can conclude that a very wide range of 
properties is acceptable. First, consider the most important state variables in the 
longitudinal dynamics from the pilot’s point of view:  speed and altitude. The control 
system must be able to drive the aircraft to different speeds and altitudes. Consider 
changes in altitude. The feedback control systems don’t use altitude explicitly, but rather 
feedback its derivative, altitude rate. Because of the integral relationship between the 
two, altitude tends to be insensitive to small transients in altitude rate. Furthermore, the 
careful design of the desired output vector minimizes large errors that would produce 
undesirable transients. In addition, the steady state error between the desired output 
vector and the actual output vector is of little concern until the desired output reaches the 
commanded output.. Zero steady state error is important only when the commanded 
output values have been reached. This is in contrast, of course, to a mission such as 
precise terrain following where the error in following a time-varying output vector would 
be critical. 
 
While it is difficult to put a range on acceptable modal properties, we can state some 
general guidelines that are based purely on observation.  These are: 
 
• The damping ratio of the mode is more important than the frequency 
• The damping ratio can vary from roughly 0.5 – 1.0 and achieve satisfactory 

performance 
• The frequency can vary from 0 1  to . rad

sec 1 0  and still yield acceptable results. . rad
sec

 
This is a rather large range which suggests that a control system with even meager 
performance is likely to be acceptable.  Most importantly, however, such a wide range 
suggests that a single set of gains, if chosen carefully, could accommodate the entire 
flight envelope of the aircraft.  
 

6.3 Choosing a Single Reference Condition for Gain Calculation 
To choose a single reference condition that would serve as representative of the whole 
flight envelope, several conclusions from Section 3 must be revisited. These conclusions 
are: 
 

• ζ p L
D

=
1

2a f ;  The damping of the mode is inversely proportional to the L/D ratio 
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2
;  The frequency of the phugoid is inversely proportional to the true 

airspeed. 
 
The lift coefficient that yields the highest L/D ratio, 

( )L
D

LC
max

, has the lowest damping. 

This occurs at the bottom of the thrust curve, i.e., at the bucket speed. Any variation in 
the lift coefficient on either side of the thrust curve will yield a decrease in the L/D ratio 
and, therefore, an increase in phugoid damping.. Furthermore, the lowest true airspeed 
will have the highest phugoid frequency.  Using this information the following reference 
condition was chosen. 
 
• Choose the trim condition for the maximum L/D ratio 
• Using the lift coefficient for maximum L/D, trim the aircraft with the lowest possible 

true airspeed.  Generally this is done by choosing a low altitude and a low weight.  
 
The rationale for gain selection is as follows: 
 
• Since it is natural for the phugoid damping to increase, select gains at the reference 

condition that puts the damping near the lower bound of acceptable. As the lift 
coefficient varies, the damping will increase and fall within the acceptable range. 

• Since the phugoid frequency decreases with increasing speed, select gains to put the 
frequency and the reference condition near the top of the acceptable frequency range. 
As the velocity increases, the frequency will come down and stay within the 
acceptable range. 

 
Of course, in practice there is no guarantee that a system augmented with feedback 
control will maintain any of its open loop tendencies so the rationale as stated is merely a 
vague guideline.  In reality different properties work better, however the stated reference 
condition did turn out to be a good choice.  
 

6.4 Evaluating System Performance with Scheduled Gains 
In practice, the aircraft dynamics did not vary as predicted when feedback control was 
applied; however, through some experimentation, the following modal properties were 
found to yield favorable results. 
 

For jet (turbofan) and turboprop aircraft: 
• Integrator pole locations:  -0.20, -0.25 
• ωp = 0.25 rad/sec, ζp = 0.9 
For piston aircraft: 
• Integrator pole locations:  -0.20, -0.25 
• ωp = 0.40 rad/sec, ζp = 0.9 
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Gains were calculated for the DC-9 aircraft in all control regions. Using these desired 
modal properties the loci of poles over the entire flight envelope are plotted in Figure 6.4 
- Figure 6.7. A key to the figures is presented in Table 6.1. The poles are plotted only for 
the corners of the flight envelope as defined by the lift coefficient, altitude, and weight. 
 

Table 6.1  Marker key to Figure 6.4 - Figure 6.7 

Outer marker - Lift Coefficient 
 box front-side 
 circle bucket 
 diamond back-side 
Middle marker - Altitude 
 box sea level 
 circle mid-range altitude 
 diamond service ceiling 
Inner marker - Weight 
 + empty weight 
 x mid-range weight 
 dot max take-off weight 

 
Consider altitude-rate-only feedback.  The locus of closed loop poles produced for the 
aircraft is in Figure 6.4. Notice that the lowest phugoid damping occurs on the back-side 
of the thrust curve, instead of at the bucket speed as predicted earlier. The highest 
phugoid frequencies occur at sea level, as predicted. One should note the location of the 
integral poles since they stray into the right-half-plane. This means that our analysis of 
the linear system is predicting instabilities near stall speed, particularly at low weights 
and low altitudes. We will have to validate this flight condition by analyzing the transient 
response of the non-linear system. It is useful to note that we should expect a significant 
difference between the non-linear system and our linear approximation outside of the 
steady, level flight region because we stray more from the reference condition used for 
the linearization. 
 
Figure 6.5 shows a similar locus for speed-only feedback. The trend is similar to that of 
Figure 6.4, except that the integral poles do not extend into the right-half-plane. While 
this region demonstrates greater stability, we should continue with an analysis of the non-
linear transient response. 
 
Figure 6.6 is a root locus plot for the steady, level flight region. We note similar trends as 
in Figure 6.4 and Figure 6.5: the lowest damping occurs on the back-side of the power 
curve and the highest phugoid frequencies occur at low weight and low altitude. 
However, inspection of the locus does show that the modal properties for the entire flight 
envelope do fall within the general guidelines set forth in Section 6.2.   
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Figure 6.4. The locus of closed loop phugoid poles in for altitude-rate-only feedback for the entire flight 

envelope of a DC-9 in the clean configuration 
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Figure 6.5. The locus of closed loop Phugoid poles for speed-only feedback for the entire flight envelope 
of a DC-9 in the clean configuration 
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Figure 6.6. The locus of closed loop Phugoid poles in the steady, level flight region for the entire flight 
envelope of a DC-9 in the clean configuration 

 
Unlike the other Regions, the steady, level flight controller may use the back-side of the 
thrust curve. There are two PI (proportional/integral) compensators at work and therefore 
there are two integral poles. In some parts of the envelope the integral poles become 
complex. This is seen in the locus of points grouped closer to the imaginary axis. (See 
Figure 6.7 as well). This still is not a concern because the integrator poles remain within 
the acceptable guidelines for modal property selection.  
 
Finally, high lift devices are considered. If the aircraft can operate with a single set of 
gains when high lift devices are employed as well as during clean configuration, the 
number of required gains for the system can be cut by a factor of 5 (avoiding a different 
set of gains for each flap setting). To explore this possibility, the full flap case of the DC-
9 is considered. Figure 6.7 shows the locus of points within the flight envelope under the 
full flap condition. As can be seen, the majority of flight conditions remain acceptable. 
However, in some cases, the integral poles become complex and are much slower than 
the Phugoid poles. This can cause a problem at low speed in that the aircraft may not 
capture the desired airspeeds as crisply and cleanly as it does at higher speeds.  
 
This condition presents a bit of a dilemma. During most of the simulation development, it 
was assumed that low speed flight would require additional control laws and gains.  Now 
we can see that one set of gains can fly the aircraft through its entire flight envelope; 
however, performance could be diminished in the low speed range. Here is a classic 
trade-off between precision and simplicity.  
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Figure 6.7. The locus of closed loop Phugoid poles in the steady, level flight region for the entire flight 
envelope of a DC-9 with full flaps deployed 

 
A more sophisticated control law will fly the airplane more precisely; however, it would 
also require extra code, and more gains.  For right now, since performance is still 
reasonably good in the low speed range, the decision has been made to capitalize on this 
unexpected result to simplify the control system. However, future requirements for other 
aircraft types may require a more complex control system to address the needs of low 
speed flight.  
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7. The Lateral Directional Control Laws 
The lateral directional control laws are considerably simpler than the control laws 
required to fly the aircraft longitudinally. The reason for the added simplicity is that one 
of the governing differential equations, the roll equation, can be modeled with a linear 
approximation. This approximation is used for two reasons. The first reason is that an 
accurate model of the full nonlinear roll dynamics is not essential to the modeling of 
accurate trajectories. The second is that the roll mode is so heavily augmented by the 
pilot or autopilot that the dynamics of turn rate capture is much more dependent on pilot 
response than the actual roll dynamics. The decision to approximate the speedy roll mode 
permits us to ease computational effort by selecting a half-second time step. Such a long 
time step is not adequate to capture the roll dynamics, though it is more than adequate to 
capture the slower phugoid dynamics. 
 
Because our roll mode is linear, we can close feedback loops analytically without 
requiring the same detail that is done with the longitudinal dynamics. The main loop 
closures for the turning dynamics were already closed analytically in Section 2 and 
imbedded directly into the open loop dynamics making the desired bank angle, f des , the 
primary input to the roll equation. Although the loop closures are done analytically, we 
discuss them in this section as we outline the complete lateral directional control laws. 
 
The four topics for discussion are: 
 
1. The bank angle capture algorithm 
2. The heading capture algorithm 
3. Using the Bank Angle Capture and Heading Capture Algorithms to execute a turn 
4. Deciding which way to turn 
 

7.1 The Bank Angle Capture Algorithm 
The bank angle capture algorithm is the major kernel of the lateral directional control 
law. Consider the governing lateral directional equations of motion shown in equations 
(7.1) through (7.3). The first two equations characterize the aircraft’s response in roll to 
the aileron deflection. Equation (7.3) characterizes the aircraft’s turn rate with respect to 
a given bank (or roll) angle.     
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The only input to the system is the aileron deflection and the state variables of immediate 
interest are the roll rate p and the bank angle, φ. The equations of motion can be written 
in state space as shown in equation (7.4). 
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0
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     (7.4) 

 
For feedback control we choose to feed back both p and φ so that we can control both the 
frequency and the damping of the roll mode. The closed loop block diagram is shown in 
Figure 7.1. 
  

&x Ax Bu= +k kp f

f des f

 
 

Figure 7.1.  Block diagram for the rolling dynamics 
 
The closed loop state space equations are: 
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Section 2.14 explains that the natural integral relationship between δa and φ guarantees a 
zero steady state error without the use of integral control. We can verify this by 
examining the f f des

 transfer function shown in equation (7.6). From inspection, we see 
that the DC gain of the transfer function is unity. 
 

f
f

d f

d d fdes p p

L k

s L k L s L k
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a a
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We can see that with the closed loop dynamics already incorporated into the open loop 
dynamics, there is very little left to do. The feedback gains are chosen to give the desired 
time response and can be tailored for each individual flight. Nominally, the gains are set 
to kp = 22 and kφ = 50. 
 
Sometimes it is desirable to command a specific turn rate. Since the turn rate equation is 
very nearly a linear function of the roll angle, we simply choose to adjust our 
commanded bank angle rather than creating another feedback control loop to drive the 
system to a commanded turn rate. Calculating the required bank angle is done by 
rearranging equation (7.3).  
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7.2 The Heading Capture Algorithm 
The heading capture algorithm is designed to capture a specified heading. To capture a 
given heading, we feed back the desired heading to the bank angle using the control law 
shown in equation (7.8).  
 

f y yyd dk= -b g     (7.8) 
 
To predict the effect of this feedback control law, we must first add the heading equation 
to our state space model. Consider the linearized version of the turn rate equation which 
finds its way into our state matrix. 
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If we assign our reference condition for the linearization to be φ = 0.0, then ∆φ = φ. 
Furthermore, if we note that for the bulk of the flight the lift equals the weight and the 
flight path angle is near zero, we can simplify equation (7.9) to equation (7.11).  
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Arranging the system of equations in state space we have equation (7.12). 
 

 
&

&

&

p L L k L k

g

V

p L kp p

a

des

a a a

f
y

f
y

f
d d f d fL

N
MMM

O

Q
PPP
=

- -
L

N

MMMM

O

Q

PPPP

L

N
MMM

O

Q
PPP
+
L

N
MMM

O

Q
PPP

0

1 0 0

0 0

0

0

   (7.12) 

 
When we close a proportional loop around the system with kψ as our feedback gain, as 
shown in Figure 7.2, we see that the new closed loop system is equation (7.13). There is 
an integral relationship between the heading and the roll angle so zero steady state error 
is achieved without the use of integral control. 
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Figure 7.2. Block diagram for heading feedback 
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Further verifying that integral control is unnecessary, we see that the transfer function 
that characterizes the relationship between ψ and ψd, equation (7.14), has a DC gain of 1.  
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7.3 Using the Bank Angle Capture and Heading Capture Algorithms 
to Execute a Turn 
When turning, the heading capture algorithm cannot be used for large heading errors. The 
reason is that the heading capture algorithm will command a bank angle proportional to 
the heading error. If the heading error is large, the control law will command an 
unreasonably large bank angle such as 180 degrees. This bank angle would correspond to 
an inverted aircraft and certainly does not make the aircraft turn any faster. Therefore, the 
heading capture algorithm is used only when the heading error is less than 15 degrees. 
For errors greater than 15 degrees, the bank angle control law is used to command a 
constant turn rate in the direction of minimizing the heading error. Nominally, a bank 
angle of 30 degrees is used. Consider the following simulation example. The simulation 
parameters are as follows: 
 
• Va = 300 ft/sec 
• Lp = -0.475 
• 

a
Lδ = 0.185 

• kp = 2.836 
• kφ = 2.756 
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Although the ADM uses kψ = 1, this simulation uses the following feedback gain, which 
accounts for variations in airspeed.  
 

k
V

g
a

y = 0 005.      (7.15) 

 
We simulate a turn to the right from a heading of 0 degrees to a heading of 100 degrees 
as shown in the simulation results in Figure 7.3. Initially, the aircraft rolls to the right to 
achieve a bank angle of 30 degrees. The aircraft holds the bank angle and steadily turns 
toward a heading of 100 degrees. When the aircraft is within 15 degrees of the desired 
heading, the heading capture algorithm takes over and drives the remaining heading error 
to zero.   
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Figure 7.3. Simulation of Aircraft Executing a Turn 

 

7.4 Deciding Which Way to Turn 
The TGF simulator’s user interface allows for a turn left or right to the heading 
command. Often, however the aircraft is left to make that decision for itself. In this case, 
the aircraft must choose which direction of turn is the shortest. Either a left turn or a right 
turn will work, but one turn is shorter. The dilemma is illustrated in Figure 7.4. To the 
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human, it is obvious that a right turn is appropriate for the situation presented in Figure 
7.4; however, the logic required to make the autopilot come to the same conclusion is not 
trivial. The following logic determines the magnitude and the sign of the heading error, 
referred to as e5 in the simulation code. The first task is to determine the magnitude of the 
heading errors to the left and right, symbolically represented as eleft_turn and eright_turn. 
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Figure 7.4.  An illustration of the dilemma of whether to make a right of left turn to a heading 

 
if ψd > ψ 
 eright_turn = (ψd - ψ) 
 eleft_turn = (ψd - ψ) - 360 
 
if ψd < ψ 
 eright_turn = (ψd - ψ) + 360 
 eleft_turn = (ψd - ψ) 

 
Next, the absolute value of eleft_turn and eright_turn are compared to determine which is 
smaller. The actual heading error, e5, is set equal to the smaller of these two errors. It is 
convenient to use the convention that turning errors to the left are always negative and 
turning errors to the right are always positive. This corresponds nicely to the bank angle 
convention where banks to the right are considered positive and banks to the left are 
negative. Therefore, there is no need to adjust the previously developed control laws to 
make sure that the aircraft turns in the desired direction when commanded.  
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7.5 Capturing a Heading when the Direction of Turn is Specified 
The introduction of the left or right turn variability adds more complexity to the system 
than what was previously anticipated. Basically, when the aircraft was constrained to turn 
in only one direction, it would not always capture the proper heading. This happened 
because when the aircraft turned in the specified direction towards the target heading, it 
would overshoot slightly and instead of turning back to the heading, it would turn 360 
degrees around. Therefore, there needed to be some distinction made between the initial 
turn and the capture of the heading. Figure 7.5 shows the algorithm for determining 
whether or not a heading has been captured. Essentially, the aircraft turns in the specified 
direction until the heading error is within 5°, at which point is uses the logic of the 
previous section to determine the turn direction on its own. The term e5 is the error in 
heading.  
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Figure 7.5.  Algorithm for capturing a heading  
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8. The Lateral Guidance System 
The purpose of the lateral guidance system is to steer the aircraft to follow routes or other 
sim-pilot commands within the horizontal plane. There are four basic maneuvers. These 
are: 
 
• Ground track guidance 
• Fix capture guidance 
• Route following 
• Route capture 
 
The ground track guidance algorithm steers the aircraft along a specified ground track 
from the flight plan. In the presence of wind, the algorithm must determine a wind bias to 
the aircraft heading to maintain the ground track. The fix capture algorithm flies the 
aircraft to a fix. Route following steers the aircraft along a specified route. Finally, the 
route capture algorithms are discussed. The route capture algorithms steer the aircraft 
towards a route and then capture the route. Several different ways to capture a route will 
be discussed.  
 

8.1 Ground Track Guidance 
The ground track azimuth is the angle between the aircraft’s ground track and true North. 
Under a zero wind condition, the ground track azimuth is the same as the aircraft’s 
heading. In the presence of wind, the ground track azimuth will differ from the aircraft 
heading as illustrated in Figure 8.1. To fly to a fix or capture a route, the aircraft must 
follow a given ground track azimuth rather than a specific heading; yet the lateral control 
system is designed only to turn to a desired heading. The lateral guidance must bias its 
heading commands to the lateral control system with a correction factor that accounts for 
 
 

Wind

Aircraft
ground
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ψ

ψGT ∆ψ

Vacos γa

Vw

VGT

δψw

 
 

Figure 8.1.  Illustration of the difference between ground track and heading 
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winds. To accommodate this requirement, the lateral guidance measures the difference 
between the heading and the ground track azimuth, which we denote as ∆ψ. Our tracking 
algorithm makes uses the following nomenclature: 
 
• ψ: The aircraft’s heading, in degrees.1 
• ψGT: The aircraft’s ground track azimuth, in degrees. 
• δψw: The wind bias. 
• ψd: The desired heading. 
• 

dGTψ : The desired ground track azimuth. 
 
We define the wind bias as the difference between the aircraft’s ground track azimuth 
and its heading. 
 
 δψw ≡ ψGT - ψ (8.1) 
 
The aircraft’s ground track azimuth and heading are available from the aircraft dynamics. 
The wind bias, δψw, is then used to adjust the desired ground track so that the aircraft will 
track properly. The result, calculated using Equation(8.2), is the desired heading.   
 
 
 
 

dd GT wψ ψ δψ= −  (8.2) 
 
Equation(8.2) is not intended as an accurate representation of the vector algebra 
graphically depicted in Figure 8.1; it merely shows the use of the wind bias as a 
correction factor. Its simplicity does not compromise its intent, which is to capture the 
desired ground track azimuth. 
 

8.2 Fix Capture Guidance 
To fly to a fix, it is necessary to know the range and bearing to the fix. Algorithms that 
perform these operations are discussed later. Once the bearing to the fix is known, the 
turn-to-heading logic is used to turn the aircraft to that bearing.  This control strategy is 
effective as long as the aircraft is sufficiently far away from the fix so that the bearing is 
not changing quickly as seen in Figure 8.2.  Bearing changes constantly as the aircraft 
moves, except when flying directly to the fix. 
 
 
 

                                                 
1 Analysis of the wind bias requires a comparison of the azimuth of the aircraft’s velocity vector, ψa, with 
the ground track azimuth, ψGT; but in Chapter 2, we stated the assumption that the aircraft is always 
trimmed for coordinated flight; i.e., the sideslip is always zero. This means that the azimuth of the aircraft’s 
velocity vector, ψa, is coincident with the aircraft’s heading, ψ. Therefore, for our purposes, the analysis is 
equally accurate in comparing ψ and ψGT. 
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Figure 8.2.  An aircraft turning to a fix 

 
If the aircraft is sufficiently close to the fix and the required turn to the fix is large, the 
rate of bearing change will be equal to or greater than the turn rate of the aircraft. This 
will prevent the convergence of aircraft ground track and bearing, as shown in Figure 8.2.  
This particular case was of some concern originally; however, when the algorithm was 
actually tested, it turned out to be very difficult to set up a case where the aircraft would 
perpetually orbit a fix. Since the likelihood of such an occurrence is so rare, the current 
simulation makes no allowance for this limitation.  
 
Ground track guidance is operated from within the fix capture guidance system to steer 
the aircraft. When the aircraft is 0.1 nm from the fix, the fix is considered captured.  
Figure 8.3 illustrates the fix capture functionality.  

 

8.3 Route Following 
The purpose of the route following algorithm is to guide the aircraft along a route. This 
includes maintaining the ground track along individual segments and transitioning to new 
segments at the proper time.  
 

8.3.1 Maintaining Ground Track Along a Segment 
When flying a particular segment, the route following algorithm commands the ground 
track of the aircraft based on the lateral distance that the aircraft is away from the 
segment, the capture segment’s bearing, and the aircraft’s radius of turn. The scenario is 
illustrated in Figure 8.4. The intercept angle for the given segment is a function of how 
far the aircraft is laterally from the segment.   
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Figure 8.3.  Fix capture guidance algorithms 
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Figure 8.4.  Illustration of the aircraft in route following mode 
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The intercept reaches a maximum of 45 degrees when the aircraft is one-half a turn radius 
away from the segment.  The intercept angle is bounded at 45 degrees. Equations (8.3) 
and (8.4) are used to determine the aircraft’s desired ground track. First, ψ∆  is 
calculated using Equation (8.3).  If the result has a magnitude greater than 45 degrees, the 
answer is bounded at 45 degrees using Equation (8.4). The ratio δ

δ  is used to preserve 
the sign of the original value. Note that the lateral distance term,δ , maintains a sign 
convention of  positive values on the right side of a segment and a negative value on the 
left side of the segment. This solution is adapted from the original System Segment 
Specification [TGF93]. 

  

90  +    45o
FTE

tr
δψ δψ ψ∆ = ∆ <,    (8.3) 

 

45 ,               45oδψ
δ

∆ = ∆ ≥ψ

   

   (8.4) 

 
 

   
dGT rψ ψ ψ= − ∆      (8.5) 

 
The terms are defined as follows: 
 
• δ :       The aircraft’s lateral distance from the capture segment  (nm) 
• rψ :     The capture segment’s bearing.  (degrees) 
• :       The aircraft’s turn radius.  (nm) tr
• 

dGTψ :  The aircraft’s desired ground track  (degrees) 
• FTEδψ :  The heading bias from flight technical error (degrees) 
 
As with all other heading commands, the term 

dGTψ  needs to be adjusted to keep values 
within the 0 - 360 degree range. The logic for this operation is shown in Figure 8.5. 
 
The flight technical error (Chapter 11) is sent to the heading-based course guidance in the 
form of a lateral offset, denoted as FTErδ . The lateral error offset is then related to a 
heading bias using Equation (8.6). 
 

90
FTE FTE
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r

δψ δ=       (8.6) 
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Figure 8.5. Logic for insuring desired ground track is within proper boundaries 

 
The terms in the equation are defined as follows: 
 
• FTEδψ :  The heading bias created from flight technical error (degrees).   
• :     The turn radius for the aircraft at the current speed (nm). tr
• FTErδ :    The lateral offset from flight technical error (nm). 
 
The flight technical error conversion from lateral distance to a heading bias mimics 
Equation (8.3) in form and causes the course guidance algorithm to produce the lateral 
offset error of  FTErδ  in the flight path.   
 

8.3.2 Transitioning to the Next Segment  
The route following and route capture algorithms both advance the route segment number 
when the aircraft moves along a segment beyond a point where a turn must be made to 
affect a smooth transition to the next segment. This distance is termed the segment 
transition distance and is illustrated by Figure 8.6. The magnitude of this distance is 
affected by the turning radius of the aircraft and hence the speed of the aircraft. 
 
To determine the segment transition distance, two different drawings of the scenario are 
presented in Figure 8.7 and Figure 8.8. Figure 8.7 shows the more common case where 
segments intersect at obtuse angles. Figure 8.8 shows the less common case where 
segments intersect at acute angles. First, the angle between the segments is calculated 
using the definition of the dot product as shown in Equation (8.7) and its final form 
Equation (8.8). 
 

1 2 1 2s s s s a⋅ =R R R R cos     (8.7) 
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Figure 8.6. Illustration of segment transition distance 
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Figure 8.7. The geometry of segments which intersect at obtuse angles 
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The segment transition distance, l , is then calculated by observing in Figure 8.7 that 
two isosceles triangles are formed creating a ‘kite’ like pattern. We can then bisect the 
angle and form two right triangles. Trigonometry can then be used to calculate the  

offset

 
segment transition distance using Equation (8.9), where  is the turn radius of the 
aircraft. A factor of 1.3 is added to allow for a margin of error since turn dynamics are 
not instantaneous. The equation is valid for the acute angle case of Figure 8.8 as well.  

tr

 

2offset t
al r  =  

 
tan      (8.9) 

 

8.4 Capturing a Route  
A route in the aircraft simulation consists of a list of fixes. Segments in the simulation are 
defined by adjacent fixes along a route. There are three ways to used to capture a route. 
They are: 
 
• Automatic route capture 
• Vectored route capture 
• Initial fix route capture 
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Figure 8.8. Geometric representation of segments adjoined at an acute angle 
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When using automatic route capture, the aircraft guidance performs all of the necessary 
operations to determine which segment should be captured first and then steer the aircraft 
toward the segment. Finally, the capture algorithm merges onto the route. The vectored 
route capture algorithm requires manual guidance of the aircraft to the route; however, 
once the aircraft is sufficiently close to the route, the guidance algorithm merges the 
aircraft with the route. The last route capture algorithm is the initial fix route capture. 
This algorithm flies the aircraft to the initial fix first and then captures the route.  
 
Some general algorithms are used to make the captures algorithm work. These functions 
are: 
 
• Determining a  capture segment 
• Determining if it is time to turn onto the route 
 

8.4.1 Determining a  Capture Segment 
There are three criteria which are used to determine the appropriate segment to capture. 
These criteria are: 
 
1. The Dot Products of the aircraft’s location relative to the leading and trailing fixes 

and the segment’s vector sR . 
2. The lateral distance from the segment. 
3. The closest trailing fix. 
 
Criterion #1 is summarized as: 
 

If a segment’s position vector when dotted with a position vector from the aircraft’s 
location to the leading fix yields a positive value, and if a segment’s position vector when 
dotted with a position vector from the aircraft’s location to the trailing fix of the same 
segment yields a negative value, then the aircraft should capture the segment. 
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Consider the following scenario shown in Figure 8.9. There are three segments in the 
route and the aircraft must determine which segment to capture. To do this the position 
vectors r1 through r4 are determined. These vectors are then dotted with the position 
vectors of each segment. If the dot product between a position vector from the aircraft 
location to the leading fix of a segment and the segment position vector is positive, then 
the aircraft tends to be behind the leading fix of a segment. Likewise, if the dot product is 
negative, the aircraft will be ahead of the fix.  For a segment to be a good choice for 
capture, the aircraft should be behind the leading fix and in front of the trailing fix. In the 
scenario in Figure 8.9, we see that the dot products for the first segment are both 
negative.  Therefore the aircraft is in front of the first segment. For the second segment, 
the dot product to the trailing fix is negative while the dot product to the leading fix is 
positive. The second segment would therefore be an acceptable choice for capture.  
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Figure 8.9.  Scenario of an aircraft determining which segment to capture 
 
Looking at the third segment, both dot products are positive so the segment is in front of 
the aircraft. Initially, this test alone was thought to be sufficient to determine which 
segment should be captured; however, it is not. 
 
Consider the next case shown in Figure 8.10. When the required dot products are 
calculated, it is shown that both segments meet the requirements for capture. Therefore 
criterion #2 calculates the lateral distance from every segment deemed acceptable by 
criterion #1. The closest segment is captured. In Figure 8.10, the first segment is chosen 
because it is the closest to the aircraft. 
 
Before extensive testing, it was thought that these two criteria would be sufficient to 
handle all cases. They are not. Consider the cases where no segment is acceptable as 
defined by criterion #1. These cases are illustrated in Figure 8.11. Criterion #1 will fail to 
yield any segment for capture if its dot product requirements are not met. This often 
occurs when the aircraft is sufficiently behind or in front of the route as shown in regions 
A and C of Figure 8.11. There is also another “dead” region where two segments meet as 
shown in region B. If an aircraft is in this region, criterion #1 will not find a segment. In 
this case, criterion #3 is used. Criterion #3 checks the aircraft’s distance from every 
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Figure 8.10. A scenario demonstrating the failure of criterion #1 
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Figure 8.11. Regions where both criterion #1 and criterion #2 fail 
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Figure 8.12.  Flow chart detailing segment determination logic 

 
segment’s trailing fix. It then chooses to capture the segment that is associated with the 
closest trailing fix. Figure 8.12 illustrates the segment determination logic.  
 

8.4.2 Determining if it is Time to Merge onto the Route 
When an aircraft approaches a segment on a route, it must gauge when it should start to 
turn to merge cleanly onto the route. Generally, the distance that is required is a function 
of the aircraft’s speed and the intercept angle that the aircraft has with the segment. It is a 
very similar calculation to that which is used for segment transition. Figure 8.13 
illustrates the geometry of an aircraft merging onto a segment 
 
The algorithm requires the aircraft’s true airspeed and heading and a vector describing 
the segment.  
• :   Aircraft’s true airspeed. (ft/sec) aV
• ψ :   Aircraft’s heading.  (deg) 
• Rs:  A vector describing a segment.  
 
First, a vector, V, representing the aircraft’s velocity is created from the aircraft’s 
airspeed and heading. Using the definition of the dot product, the angle between the 
vectors is calculated using Equation (8.10). 
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Figure 8.13.  Illustration of geometry associated with an aircraft merging onto a segment when aircraft is 

heading in the direction of the segment 
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We can see from the geometry in Figure 8.13, that the problem is similar to the segment 
transition problem. We can see from the figure that the distance at which the aircraft 
should turn, l , is the projection of  onto a line normal to the segment. Therefore it 
can be calculated using Equation (8.11), where  it the turn radius of the aircraft in nm.   

turn offsetl

tr
 

(1 3 180
2turn t
al r  =  

 
. tan sin )a−

a

     (8.11) 

Using the trigonometry identity 180a = −sin sin( ) , Equation (8.11) can be simplified to 
Equation (8.12). 

1 3
2turn t
al r  =  

 
. tan sin a      (8.12) 

 
When the aircraft is tending to head in the direction opposite the direction of the segment, 
more distance is needed to turn because the aircraft must completely change the direction 
of flight to fly along the segment. This case is illustrated in Figure 8.14. However, 
Equation (8.12) is still valid as can be verified from inspection of the geometry in Figure 
8.14. 
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Figure 8.14.  An aircraft merging onto a segment which is pointed in a direction opposite of the aircraft's 

current velocity 

8.4.3 Automatic Route Capture 
The automatic route capture guidance algorithm automatically steers the aircraft to the 
nearest segment and captures the segment.  The algorithm is described in the flow 
diagram illustrated in Figure 8.15. 
 
The reader will notice that there are 4 algorithms which are used in automatic route 
capture guidance. These algorithms are determining a capture segment, determining if it 
is time to merge onto the route, determining if the segment should be advanced, and 
determining a dynamic fix. Each algorithm is already covered in a previous section with 
the exception of the dynamic fix which is unique to automatic route capture. 
 

8.4.3.1 The Dynamic Fix  
The dynamic fix is an imaginary fix which is created by the system at some location 
along a segment and is used as a point of reference for capture. When the automatic route 
capture algorithm was first conceived, it seemed as though the most obvious method of 
capturing the route was to fly some intercept heading to the route.  For instance, once the 
capture segment was determined, the aircraft could be given an intercept heading of 45 
degrees and intercept the segment. However, this method seemed to have some inherent 
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limitations. First, the aircraft would always intercept using 45 degrees regardless of how 
far the aircraft was away from the segment. An aircraft far away from the capture 
segment might pass the segment before ever capturing it. This situation is illustrated in 
Figure 8.16. 
 

Has a 
segment been
determined?

Determine Capture Segment

Has a
 dynamic fix been 
established along 

the path?

Determine Dynamic Fix

Yes

No

No

Yes

Is it 
time to merge
 onto route?

Determine if it is time to turn onto the route

Yes

No

Terminate Automatic Route Capture Guidance 
and initiate Route Following Guidance

Steer towards dynamic fix
using Fix Capture Guidance

Determine if 
the segment
 should be
 advanced.

Should segment
 be advanced ?

No

Yes

Advance Segment

 
Figure 8.15.  Logic for Automatic Route Capture Guidance 
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Figure 8.16.  Illustration of aircraft using a 45 degree intercept 

 
 
 

Dynamic fix

Both aircraft
capture segment

 
 

Figure 8.17.  Illustration of two aircraft capturing a segment using a dynamic fix 
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To avoid the problem of aircraft overshooting capture segments, a dynamic fix is placed 
on the segment to be captured, and the aircraft is commanded to fly toward the dynamic 
fix. This situation is illustrated in Figure 8.17. In this case the further aircraft naturally 
uses a larger intercept angle. This system insures that the proper segment is captured and 
also provides some apparent variety in intercept angles so that all aircraft do not appear 
to behave the same. To calculate a dynamic fix, first consider the drawing in Figure 8.18.  
 

Dynamic
Fix

rt3

r1

d

 
Figure 8.18. Determining an offset fix (dynamic fix) location 

 
The distance d, the distance left to travel on a given segment, is determined by dotting r1, 
the position vector from the aircraft to the leading fix, with a unit vector in the direction 
of the segment, sr̂ . The dynamic fix distance from the leading fix, , is somewhat 
arbitrarily chosen to be three turn radii less than the distance d. The turn radius of the 
aircraft is notated, r

offsetd

t.  
 
The three-turn-radii distance was chosen to insure that the aircraft, regardless of its initial 
orientation or position, can capture the dynamic fix while still maintaining the proper 
general direction along the route. Generally, two turn radii would be sufficient, providing 
the aircraft does not speed up during the maneuver. However, three turn radii are used as 
a factor of safety just in case the aircraft increases its speed and hence its turn radius 
during the maneuver.  
 

1 sd r= ⋅r ˆ       (8.13)  
  

3offset td d r= −       (8.14) 
 

We can create a vector, Roffset, describing the location of the dynamic fix where sx̂  is a 
unit vector pointing true North and sŷ  is a unit vector pointing true East.  
 

offset offset r s offset r sd x d yψ ψ= − −R ˆcos sin ˆ    (8.15) 
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However, to use the standard fix capture algorithm, the fix must be represented in terms 
of a latitude and a longitude. We can approximate the latitude of the fix by converting the 

sx̂  component of the Roffset vector to a degree value as done in Equation (8.16). Similarly, 
the longitude can be calculated in Equation (8.17).  
 

360
2

o

dyn leading offset r
e

d
r

µ µ ψ
π

= − cos     (8.16) 

 
360

2

o

dyn leading offset r
e d

l l d
r

ψ
ynπ µ

= − sin
cos

   (8.17) 

 
 
 

8.4.4 Vectored Route Capture 
The vectored route capture algorithm steers the aircraft along a fixed heading until the 
aircraft intercepts the route. Each time step, the algorithm determines which segment is 
best to capture and, each time step, the algorithm determines if it is time to merge onto 
the route.  It should be noted that the algorithm has no control over the initial heading. 
Therefore, if the heading steers the aircraft away from the route, the guidance law is 
unable to do anything about it although it will provide a warning if the aircraft is unlikely 
to intercept the route.  Figure 8.19 shows the basic algorithm for the guidance law. It 
should be noted that even though the aircraft is being vectored, it is necessary to 
determine the capture segment so that the pilot knows when to merge onto the route.  
 

Determine 
capture segment

Is it time
 to turn onto 

the route?

Yes

No

Terminate route capture with 
fixed heading guidance and activate

Route Following Guidance

Continue to follow
commanded heading

   
Figure 8.19.  Route capture with fixed heading guidance 
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8.4.4.1 Determining Whether the Heading will Intercept a Route 
While the algorithm has no control of the aircraft’s initial heading, the algorithm will 
provide a warning if the heading chosen by the user is unlikely to intercept the given 
route. Basically, the algorithm measures whether or not the intercept angle crosses a 
segment and is related to the route following algorithm. The intercept angle tψ  is 
calculated using Equation (8.18). 

t r dψ ψ ψ= −       (8.18) 
 

The terms are as follows: 
 
• tψ :  The intercept angle that the aircraft heading makes with the segment 
• rψ :  The bearing of the segment 
• dψ :  The desired heading 
 
The resulting number is used in the logic presented in Figure 8.20 
 

ψ ψ ψt r d= −

ψ t < −180 ψ ψt t= + 360

ψ t > 180 ψ ψt t= − 360

δ < 0

ψ t > 0
&

δ > 0

ψ t < 0
&or

Aircraft will likely NOT capture segment

Aircraft will likely 
capture segment

No

Yes

No

Yes

No

Yes

 
 

Figure 8.20.  Logic for determining whether or not a heading will intercept a segment 
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8.4.5 Initial Fix Route Capture 
The initial fix route capture algorithm is the simplest of all the capture algorithms 
because it neither needs to determine the appropriate capture segment nor determine 
when it should merge with the route. The algorithm flies to the first fix on the route. Once 
the aircraft crosses the fix, the route following algorithm is turned on and the aircraft 
follows the route. Because the algorithm is constrained to fly through the initial fix 
before turning to capture the first segment, the algorithm usually overshoots more when 
merging onto the route.   
 

8.5 Basic Algorithms Required for Complete Functionality 
To make the guidance system operate properly, some lower level functions are required. 
These functions are: 
 
• Calculating the aircraft’s turn radius 
• Determining the lateral distance to a segment 
• Determining the distance to go along a segment 
• Determining the Rhumb line bearing and distance to a fix 
 

8.5.1 Calculating the Aircraft Turn Radius 
To calculate the aircraft’s turn  radius, , a standard equation is used from Anderson[ 
A89], Equation (8.19), where V  is the aircraft’s true airspeed,  is the gravitational 
acceleration, and  is the aircraft load factor.  

tr

a g
n

 
2

2 1
a

t
Vr

g n
=

−
      (8.19) 

 
The load factor for the aircraft is calculated by considering Equation (8.20) where  is 
the lift of the aircraft, 

L
φ  is the bank angle, and W  is the weight of the aircraft. In the 

simulation, we will assume that the aircraft always will provide enough lift to maintain 
level flight which is implied by the equality of Equation (8.20). 
 

L Wφ =cos      (8.20)   
 

The load factor of an aircraft is defined as the lift over the weight. Assuming enough lift 
is provided to maintain level flight, the load factor can be determined as an exclusive 
function of bank angle. 

 
1L Ln

W L φ φ
= = =

cos cos
    (8.21) 
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8.5.2 Determining the Aircraft’s Lateral Distance from a Segment 
The aircraft’s lateral distance from the segment is calculated using vector operations. The 
dot product is taken of the position vector from the aircraft’s location to the leading fix of 
the segment and a unit vector normal to the vector describing the segment itself. The 
expression is best represented mathematically in Equation (8.22) and Figure 8.21. To 
insure that the desired ground track for segment capture is correct, it is necessary for δ  
to be negative when on the left side of the segment and positive on the right side of the 
segment. 
 

lf snδ = ⋅r ˆ       (8.22) 
 
The unit normal is represented in Equation (8.23). 
 

ˆ ˆy xs s ˆs s
s s

R R
n x= −

R R sy      (8.23) 

The terms in the equations are defined as follows: 

• δ :  The lateral distance from the segment 
• rlf:  A vector from the aircraft’s position to the leading fix 
• sn̂ :  A unit vector normal to the segment 
• Rs:  A vector representing the segment 
 
 

rlf

d

δ
ns

Rs

 
Figure 8.21.  Illustration of distance calculation geometry 
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8.5.3 Determining Distance to go Along a Segment 
Using the same nomenclature and geometry presented in Figure 8.21, the distance left to 
travel along the segment, d, can be calculated using Equation (8.24). 
 

s
lf

s

d = ⋅
Rr
R

     (8.24) 

8.5.4 Rhumb Line Bearing  
The rhumb line is a line of constant course, or heading. The distance between the two 
fixes using the rhumb line can be much greater than a great circle arc if the fixes are far 
apart.  
 
For a spherical earth, a rhumb line is a straight line drawn between the two points on a 
Mercator projection of the earth’s surface. The mercator projection separately maps 
latitude and longitude to a planar surface. The rhumb line is then the hypotenuse of the 
triangle formed by the projection of the latitude change and longitude change onto that 
planar surface. Our derived equations should be consistent with the Mercator 
transformation equations of Clarke [C95]. 
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Figure 8.22. Cylindrical mapping of spherical Earth model.  Shown are two fixes and the constant 

heading route between the fixes. 
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Figure 8.23  Geometry relating latitude, longitude, and bearing on a spherical earth 

 
Referring to Figure 8.23, the changes in latitude and longitude along a rhumb line on a 
spherical earth are given by, 
 

 costan r d
r d

lλψ
λ

=  

 costan dl
d

λψ
λ

=  (8.25) 

 
which can be rewritten as, 
 

 tan
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ddl λψ

λ
=  

 
Upon integrating, we get, 
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Solving for the true heading, we get, 
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This is consistent with the equations for the equatorial Mercator projection as presented 
in Clarke [C95].  
 
The longitudes must be analyzed so that the shorter path around the world is chosen. The 
following algorithm will normalize the longitude change for our purposes. 
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2 1

180 *360

l l l

While l l l sign l

∆ = −
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And the true heading equation becomes, 
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 (8.28) 

 
Because the arctangent has a range (-90°,90°) and we want a heading in the range 
(0°,360°), we need to be careful about how we solve this equation. We, therefore, 
develop the 360° arctangent function. 
 

 2 1
360arctan ln tan ln tan ,

4 2 4 2
lλ λπ πψ

     = + − +           
∆  (8.29) 

 

8.5.4.1 360° Arctangent Function 
In this section, we develop an algorithm for the arctangent of a ratio of Cartesian 
coordinates in the range (0°,360°). Because the ratio is of the ordinate to the abscissa, we 
can adapt the range of the arctangent function per the quadrant of the coordinate pair. 
 

Function θ = arctan360(δabscissa ,δordinate ) 
 
 if δabscissa  0 and δordinate  0 

  ordinate

abscissa

δθ
δ

 
=  

 
arctan  

 if δabscissa  0 and δordinate  0 
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  360ordinate
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δθ
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 
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 
oarctan  

 else 

  180ordinate

abscissa

δθ
δ

 
= + 
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oarctan  

 end 
 

8.5.5 Rhumb Line Distance 
 
Once again referring to Figure 8.23, the incremental distance along a rhumb line on a 
spherical earth is given by, 
 

 cos er d
ds

λψ =  

 

 
cos

er dds λ
ψ

=  

 
which integrates to, 
 

 ( )2 1

cos
ers

λ λ
ψ
−

=  (8.30) 

 
Absolute value is used because we want a positive distance. Equation (8.30) does not 
apply for east-west rhumb lines. For these cases we use an alternate relation, also 
obtained from the geometry of Figure 8.23. 
 
 cosEW eds r dlλ=  (8.31) 
 
Since the latitude is constant, this integrates to, 
 
 cosEW es r λ l= ∆  (8.32) 
 
The question arises as to what earth radius to use in the calculations. A good 
approximation to the spherical earth radius is to use the local radius of the first point in 
the WGS-84 earth model, which is given by using equations (2.107) and (2.108). 
 

8.5.6 Creating Vectors Representing Segments 
There is a need to represent segments as vectors. To create a vector, a magnitude and 
bearing are required. Generally, the rhumb line information is used. A segment’s bearing 
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is the rhumb line bearing between the two endpoint fixes that make up the segment, and 
the segment’s length is the rhumb line distance between the two fixes. The vector 
components are represented in the surface frame as shown in Equation (8.33) 
 

s s s s s ss x s syψ ψ= +R ˆcos sin ˆ      (8.33) 
 

The nomenclature is defined as follows: 
 
• Rs:      The vector representing the segment 
• ss:      The rhumb line distance of the segment 
• ψs:     The rhumb line bearing between the trailing and leading fixes of the segment 
• , s sx yˆ ˆ : Unit vectors representing the x, y components of the surface frame. 
 
 



 

9. Navigation Error Modeling 
The purpose of navigation error modeling is to model the variances which occur in 
aircraft flight paths as a result of imperfect information. Three different navigation 
systems are modeled: These are: 
 
• VOR/DME navigation 
• GPS navigation 
• ILS navigation 
 
The two navigation types generally used for en route types of operation are VOR/DME 
and GPS navigation. The ILS model is used only for approach to landing. All of the 
navigation error models perform similarly in that they create a perturbed estimate of the 
aircraft’s location for the guidance system to use as an input. Therefore, the navigation 
error models all return a latitude-longitude pair which represents the aircraft’s position as 
determined by imperfect navigation.  
 

9.1 VOR/DME Navigation 
Aircraft which use VOR/DME navigation are relying on a network of ground based VOR 
transmitters for bearing information and DME for distance information. The aircraft use 
range and bearing information from VOR/DME stations of known position to estimate 
the position of the aircraft. However, pure VOR/DME navigation puts more constraints 
on the problem in that aircraft usually always fly either to or from a VOR/DME station 
along a predetermined radial rather than using some area navigation (RNAV) technique. 
Therefore, not only does the aircraft’s position need to be calculated, but also a technique 
to determine which VOR/DME is most appropriate for navigation must also be 
determined.   
 
The process of VOR/DME navigation can be broken into two parts. These are: 
• Determining the aircraft position from a given VOR/DME station 
• Determining which VOR/DME station is best used for navigation 
 

9.1.1 Determining Aircraft Position from a VOR/DME Station  
The VOR transmitters send a line-of-sight RF signal that provides a bearing of the 
airborne receiver with respect to magnetic north. In the following discussion, it is 
assumed that the magnetic bearing angle, has been corrected with the magnetic bearing 
correction,  to yield the geodetic bearing angle, : The VOR/DME navigation error 
model takes perfect information about the aircraft’s position and corrupts it according to 
the range and bearing biases for a given VOR/DME.  This corrupted aircraft position 
information is sent to the guidance system which guides the aircraft using the corrupted 
information.  

B
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Consider the illustration in Figure 9.1. The estimated aircraft position is in error from the 
actual aircraft position by a certain range error, ∆ρ , and bearing error, ∆ . Generally, the 
range and bearing from the station to the aircraft is calculated using the rhumb line 
bearing and distance algorithms in Section 8. 

B

 
• ρ :  The range to the station (nm) 
• :   The bearing from the station (deg) B
• ∆ρ :  The total range error (nm) 
• :   The total bearing error ∆B
 

B

ρ

∆B

ρ+∆ρ

Actual Aircraft Position

VOR/DME Estimated
 Aircraft Position

 
 

Figure 9.1.  An illustration of the range and bearing from the station 

 
The actual aircraft position in the NED or surface frame from the station is represented in 
(x,y) coordinates as defined in equations (9.1) and (9.2) where the terms x  and y  are 
the actual (x,y) locations for the aircraft.    

act act

 
xact B= ρ cos      (9.1) 

 
yact B= ρ sin      (9.2) 

 
The estimated location of the aircraft as determined from the range and bearing error is 
defined by equations (9.3) and (9.4). 
 

xest = B B+ +ρ ρ∆ ∆a f acos f
B B

     (9.3) 
 

yest = + +ρ ρ∆ ∆a f asin f      (9.4) 
 
The position error can be represented with ∆x  and ∆y . Considering the x equation first, 
we can write  
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∆ ∆ ∆x B B= + B+ −ρ ρ ρa f a fcos cos      (9.5) 
 

∆ ∆ ∆ ∆x B B B B= + B− −ρ ρ ρa fa fcos cos sin sin cos    (9.6) 
 

∆ ∆ ∆ ∆ ∆ ∆ ∆x B B B B B B B B= − B+ − −ρ ρ ρ ρ ρcos cos sin sin cos cos sin sin cos  (9.7) 
 
Linearizing with respect to the error biases, we have equation (9.8). 
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∂∆

= − −

− −

+ −
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B B B B B B
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∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

ρ
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ρ ρ

ρ ρ

cos sin sin cos

cos sin sin cos

cos cos sin sin

                                        

                                         

B∆   (9.8) 

 
Assuming a reference condition of ∆ ∆ρ = =B 0 , the linearized equation reduces to 
equation (9.9). 

 
∆ ∆ ∆x B B= − Bρ ρsin cos+      (9.9) 

 
The y equation can be manipulated similarly.  
 

∆ ∆ ∆y B B= + B+ −ρ ρ ρa f a fsin sin     (9.10) 
 

∆ ∆ ∆ ∆y B B B B= + B+ −ρ ρ ρa fa fsin cos cos sin sin   (9.11) 
 

∆ ∆ ∆ ∆ ∆ ∆ ∆y B B B B B B B B= + B+ + −ρ ρ ρ ρ ρsin cos cos sin sin cos cos sin sin  (9.12) 
 
Linearizing we  have equation (9.13).  
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∆ + ∆ = ∆ ∆ + ∆ ∆

∂∆ ∂∆

− ∆ ∆ + ∆ ∆

ρ

− ∆ ∆ ∆ + ∆ ∆ ∆B

 (9.13) 

 
Assuming a reference condition of ∆ ∆ρ = =B 0 , the linearized equation reduces to 
equation (9.14). 
 

∆ ∆ ∆y B B B= +ρ ρsin cos     (9.14) 
 

Arranging in Vector form, we have equation (9.15)  
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Generally, both the ground station and the airborne receiving equipment contribute to the 
range error and bias error. The terms δρVDA

 and δBTA
 characterize the airborne receiver 

biases. These terms are randomly generated when the aircraft is initialized. The 
VOR/DME station has errors, δρVDG

 and δBTG
,which need to be obtained from the 

VOR/DME station itself. Depending on what quadrant the aircraft is in with respect to 
the VOR/DME, the bias can be different. A VOR/DME station needs some way of 
returning the correct bias information when prompted with the bearing from the station, 

.  Figure 9.2 illustrates the relationship between the VOR/DME and the four quadrants. 
For now, it may be easier to only have one bias per VOR/DME. 
B

 
00

90

180

270

Ι

ΙΙΙΙΙ

IV

VOR/DME

 
 

Figure 9.2.  Illustration of the quadrants of the compass rose with respect to a VOR/DME station 

 
When the airborne and ground station biases are summed, they can be inserted into 
equation (9.15) resulting in equation (9.16). 
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However, the position of the aircraft is represented in terms of longitude and latitude. 
Therefore a conversion must be made.  Two conversion factors are used. These are: 
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• nm

degµ
:  Nautical miles per degree of latitude 

• nm
ldeg :   Nautical miles per degree of longitude 

 
Equations (17) through (19) are used to calculate these conversion factors.  
 

nm er
degµ

π
=

2

360
      (17) 

 
cosl e ar r cµ=       (18) 

 
2
360degl

lnm rπ
=       (19) 

 
The terms in the equations are defined as follows: 
 
• re:  The radius of the Earth in nautical miles 
• rl:  The radius from the polar axis to the surface of the Earth at a given latitude 
• µ ac :  The aircraft’s current latitude 
 
Finally, the aircraft’s estimated (corrupted) position can be calculated using equations 
(9.20) and (9.21). 
 

 
µ µ

µ

e ac nm

x
= +

∆

deg

     (9.20) 

 
l l

y
e ac nm

l

= +
∆

deg

      (9.21) 

 
 
The terms in the equations are defined as follows: 
 
• µ ac :  The aircraft’s current actual latitude 
• :    The aircraft’s current actual longitude lac

• µ e:    The aircraft’s estimated latitude 
• :     The aircraft’s estimated longitude le

 
The estimated values are the final return values.  
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Figure 9.3.  Logic for determining if the current VOR/DME used for navigation should be changed 

 
The DME ground equipment accuracy is 0.05nm (1σ) while the airborne equipment 
accuracy is 0.25nm (1σ) or 1.5% (1σ) of range, whichever is greater (AC90-45A). The 
accuracy of the VOR ground equipment is 0.950 (1σ) while the airborne equipment is 
1.50 (1σ) (AC90-45A). By far, the greatest contributor to the navigation error is the 
bearing accuracy. The DME error plays a small role.   
 
Slant range error is not accounted for explicitly in the model. This is because the altitude 
of each VOR/DME, which would need to be known to make the calculation, is not 
known. Furthermore, since the slant range error of a given situation can be estimated by 
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the pilot, the pilot is likely to compensate for it when crossing fixes and capturing radials. 
Therefore, slant range error is unlikely to contribute greatly to the navigation error.  

9.1.2 Determining the Proper VOR/DME Station to use for Navigation 
When an aircraft is navigating using VOR/DME navigation, the pilot must tune in the 
VOR/DME which is associated with the particular segment which he/she is flying. The 
proper nav-aid information would be retrieved from the chart used for navigation. This 
level of realism does not exist explicitly in the TGF simulation because capturing every 
detail and nuance of the low altitude victor routes and high altitude jet routes would be 
prohibitively expensive to implement. Therefore, the victor and jet routes are not being 
explicitly followed. Rather, the aircraft only has knowledge of the fixes on the route and 
whether or not those fixes are VOR/DME stations or intersections. Because of this 
simplification, the navigation system must look at the available nav-aids along the route 
and determine which one would be most appropriate to use for navigation.  
 
Figure 9.3 contains the logic which is used to determine whether or not the current 
VOR/DME should be switched.  The logic can also be expressed as a set of  the 
following rules: 
 
• A fix is either a VOR/DME or an intersection 
• A segment is defined by two fixes which are located at the endpoints of the segment 
• If one of the fixes associated with the segment is a VOR/DME, that VOR/DME is 

used for navigation.  
• If both fixes associated with the segment are VOR/DME’s , then the VOR/DME 

closest to the aircraft is used for navigation. 
• If neither fix is a VOR/DME, then a search is done to find the best VOR/DME along 

the route to use.   
 
It is also worth noting that the navigation algorithms have nothing to do with switching 
segments. However, VOR/DME navigation needs to be aware of switches when they 
occur. If the current VOR/DME needs to be switched, the logic in Figure 9.4 must be 
used.  
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Figure 9.4.  Logic for determining the appropriate VOR/DME for the next segment 

 
Generally, there are either one or two VOR/DMEs on the segment.  When there is only 
one VOR/DME, that VOR/DME is used.  If there are two VOR/DMEs on the segment, 
the aircraft must use the closest one.  When the segment does not have a VOR/DME 
associated with it, one must be determined. The algorithm must decide which of two 
VOR/DMEs is most appropriate. These two VOR/ DMEs are: 
 
• The previous VOR/DME which was used for navigation on the last segment 
• The next VOR/DME that lies along the route but not on the current segment 
 
Such a scenario is illustrated in Figure 9.5. The aircraft lies on a segment which does not 
have a VOR/DME but it is in between two segments that do have a VOR/DME. From 
inspection of the drawing, we can see that the next VOR/DME along the route is a much 
better choice because the current segment lies along a radial of the next VOR along the 
route.  
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vptfntfvvplfnlfv
Next VOR/DME

Previous VOR/DME

IntersectionIntersection  

Figure 9.5.  An illustration of the geometry used to determine which VOR/DME should be used for 
segments without a VOR/DME 

 
To algorithmically draw the same conclusion, there are four unit vectors that must be 
calculated. The calculations can be made with a bearing calculation algorithm along with 
the vector tool of choice. It is imperative to the function of this algorithm that the vectors 
be unit vectors and not vectors of unequal magnitudes. These vectors are  
 
• :  A unit vector from the trailing fix to the next VOR/DME r

vntf
r

• :  A unit vector from the leading fix to the next VOR/DME vnlf
r

• :  A unit vector from the trailing fix to the previous VOR/DME vptf
r

• :  A unit vector from the leading fix to the previous VOR/DME vplf

 
The unit vectors associated with each VOR/DME are then dotted with each other. 
Ideally, the dot product is equal to unity for a perfect match between a VOR/DME and a 
segment. However, for the purposes of the algorithm, we choose the higher value of 
equations (9.22)and (9.23)as shown in Figure 9.6. 
 

r r
v vn ntf lf

⋅       (9.22)   
r r
v vp ptf lf

⋅      (9.23) 
 
 
The higher value indicates that the vectors are pointing nearly in the same direction. This 
indicates that the segment lies along a radial to the VOR/DME in question which makes 
it a good candidate for navigation. 
 
There will be cases when neither VOR/DME is appropriate for navigation. In this case, 
the algorithm still chooses the highest dot product; however, it can not really be said that 
the aircraft is following a radial To or From a VOR. The aircraft is area navigating 
instead. This is not necessarily a realistic procedure for an aircraft that is flying using 
VOR/DME navigation; however, when such anomalies in the flight plan occur, it is best 
that the aircraft continue to fly rather than indicate an exception.      
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Figure 9.6.  Logic For determining which  VOR/DME to use when no VOR/DME lies along route 
 

9.2 GPS Navigation 
There are a number of error sources that contribute to the aircraft GPS position and 
velocity error; however, the dominant error is the GPS satellite clock error, bSAT,k. Figure 
9.7 illustrates the basic satellite geometry.  
 
Since the exact model for GPS satellite Selective Availability (SA) clock error is 
classified, a number of authors have approximated it using a second order Gauss Markov 
model in the pseudorange domain [PS96]. These models can be used to determine the 
GPS receiver position and velocity errors as follows. Starting with the SA clock error 
model for each visible satellite, the SA clock pseudorange and range rate errors can be 
obtained. These errors can then be translated into a local coordinate frame, such as a local 
east-north-up (ENU) frame using the methodology described earlier. 
 
An equivalent local coordinate system SA position and velocity error model can be 
formulated, to avoid the need to model the GPS satellite orbits which are required to 
determine the line-of-sight direction cosines. It also avoids the need for a Least Squares 
filter. 
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Figure 9.7 GPS Receiver Measurement Geometry 

 
The approach that is used is to start with a second-order Gauss Markov SA pseudorange 
model. Then, by adjusting the parameters of this model to match observed local 
coordinate SA position error statistics, it is possible to obtain a simplified SA position 
and velocity error model. 
 
In general, when the uncorrelated SA pseudorange and range rate errors are translated 
into SA position and velocity errors, the resulting position and velocity errors are 
correlated. The fundamental simplifying assumption that will be used is to assume that 
these correlations are negligible. If the GPS satellites were located directly overhead and 
exactly on the horizon at the four cardinal directions, the correlations would indeed be 
zero. 

 
Table 9.1. Observed Local Coordinate Position Root-Mean-Square (rms) Errors 

 

 
Coordinate 

 
Position Error 

Measured Average Daily 
Variations over 30 Days 

East 32 m 15% 
North 31 m 14% 

Horizontal 41.5* m & 37.5** m 10% 
Vertical 67 m 10% 

 
* Based on observed horizontal position errors 

**  Based on observed steady state horizontal position time difference errors 
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The available field data, obtained from [TT90] consists of the position error statistics of 
Table 9.1. In addition to the day-to-day variability, there is also a latitude dependence for 
the vertical error, particularly for latitudes greater than 60 degrees.  
 
In addition, field data was abstracted from [TT90] to describe the horizontal temporal 
decorrelation. 
 
A general second-order Gauss Markov model is described by the second-order 
differential equation [G74]: 
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where,   = error and error derivative (v = x)

               = damping factor

                frequency

               = Gaussian white noise

               = scale factor
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ω =  

 
equations (9.24) or (9.25) constitutes the simplified SA position and velocity error model. 
There is one set of these equations for each east, north, and vertical component. 
 
The next step is to select the three unknown parameters, σp, σv, and β, to match the 
observed data statistics. The results are summarized in Table 9.2. A one-hour sample 
history for all three local position and velocity SA error components is illustrated in 
Figure 9.8 and Figure 9.9. 
 

Table 9.2  Simplified vs. Observed SA Position and Velocity Model Parameters 
 

Parameter Symbol Observed Predicted 
North Position Sigma σpN 31 m 31 m 
East Position Sigma σpE 32 m 32 m 
Vertical Position Sigma σpV 67 m 67 m 
North Velocity Sigma σvN  0.38 m/s 
East Velocity Sigma σvE  0.39 m/s 
Vertical Velocity Sigma σvV  0.82 m/s 
Damping Factor β  0.55 
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Natural Frequency ω0  0.0122 
 ω1  0.0102 
 c2  0.0021 
Horizontal Position Sigma σpH 41.5* m & 

37.5** m 
 
37.3 m 

Horizontal Position Correlation ρNE -0.13* & 
-0.29** 

 
-0.3 

  

 *  Based on observed horizontal position errors 
 **  Based on observed steady state horizontal position time difference errors   
   in Figure 9.8.  
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Figure 9.8.  Monte Carlo Simulated SA Position Errors 
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Figure 9.9. Monte Carlo Simulated SA Velocity Errors 

 

9.3 Discretizing the Continuous 2nd Order Gauss Markov Process 
To implement a 2nd order Gauss Markov process in code, it must be discretized. The 
corresponding closed-form  2nd order difference equation is shown in equation (9.26)   
[PS96]: 
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   (9.26) 

 
The discrete input matrix has three terms and the state transition matrix has four terms 
within them that need to be calculated as shown in equations (9.27)and (9.28). 
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     (9.28) 

 
To calculate the state transition matrix variables, it is necessary to calculate some 
preliminary terms. These terms are defined in equations (9.29) and (9.30). 
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The state transition matrix terms are then defined in equations (9.31) through (9.34). 
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φ ω β ω ωβω
22   = −−e tt0

1 0 1 1
∆ ∆cos / sinb g b g b gω t∆   (9.34) 

 
To calculate the discrete input matrix, an additional term is needed which is shown in 
equation (9.35). 
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The terms for the discrete input matrix are shown in equations (9.36) through (9.38) 
where the terms Q , Q , and Q , are terms of the white noise error covariance matrix 
and are defined in equations (9.39) through (9.41). 
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The state variables of the process,  and v , are initialized using equations (9.42) and 
(9.43)  where the terms w  and w  are unit variance discrete Gaussian white noise. 
(Gaussian random numbers).  

x

1 2

 
x pw= σ 1       (9.42) 

 
v vw= σ 2       (9.43) 

 

9.4 ILS Localizer Error Model 
For an ILS localizer, the measured lateral deviation is the angle, ∆B

IT

I . This can be 
converted into a lateral position error as follows. The slant range, r  to the runway, is 
approximated using the rhumb line distance algorithm. Then the lateral position, r  is:   CT

 
r rCT IT BI= ∆       (9.44) 

 
The deviation angle is comprised of errors from ground based equipment and airborne 
equipment as shown in equation (9.45) where ∆BI G,  is the ground based component and 

is the airborne component.  ∆BI A,  
 

∆ ∆ ∆B B BI I G I A≡ +,  ,      (9.45) 
 
A number of references have determined that the ground-based component of the 
localizer error is not a simple random bias. Instead, it varies with the distance from the 
runway. A convenient model for this error source is to treat it as a spatial first-order 
Gauss Markov as shown in equation (9.46). By that is meant that the error does not vary 
with time but with the location of the receiver from the ILS localizer transmitter.  
 

∂
∂

β
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B s s B s n sI G B I G B∆ ∆, ,a f a f a f a f= − +     (9.46) 

 
where, 
 
•  Scaled Gaussian white noise n sBa f: 
• β B sa f : Spatial damping factor 
 

ds
ds
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dt v t dtIT= FH
I
K  = a f      (9.47) 
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β βB IT Bt v t sa f a f a f=       (9.48) 
 

∆ ∆&
, ,B t t B t n tI G B I G Ba f a f a f a f= − +β     (9.49) 

 
The actual ILS localizer beam bending errors for five different airports are illustrated in 
Figure 9.10. A set of five simulated ILS localizer beam bending errors using the above 
statistical model is presented in Figure 9.11. 
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Figure 9.10.  Measured ILS Localizer Bearing Deviation Angle Errors 
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Figure 9.11.  Simulated ILS Localizer Bearing Deviation Angle Errors 
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10. The Longitudinal Guidance System  
When an aircraft flies along a route it is often necessary to have the aircraft automatically 
meet speed and altitude constraints that are placed on fixes along the route. These are 
generally termed “crossing restrictions.” One case where crossing restrictions are often 
used is when modeling flight along a Standard Arrival Route (STAR). When the flight 
plan contains a STAR for the pilot to follow, it is assumed that the pilot has at least a 
textual description of the STAR and will make appropriate speed and altitude changes as 
published.  
 
The TGF is currently developing its longitudinal guidance system. This chapter will be 
amended once the development is completed. 
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11. Flight Technical Error 
The flight technical error (FTE) is the inability or inexactness of the pilot or autopilot to 
steer the aircraft perfectly along the desired course. If the aircraft is steered by an 
autopilot, it is the error in steering the aircraft perfectly along the intended course. The 
waypoint and navigation aid errors are independent of the FTE. 
 
Field data indicate that there is a random lateral FTE component that exists along the 
route segments. For the FMS-guided aircraft, the random en route wander was found to 
be 0.13 nm. (1σ) while for the non-FMS-guided (piloted) aircraft, it was found to be 0.7 
nm (1σ), with a period varying from roughly 4 to 8 minutes during the en route flight 
segment [Hu96]. 
 
A reasonable model for this random lateral position wander, δrFTE , is described by a 
second order Gauss Markov process:  
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   (11.1) 

 
 
The terms in the expression are defined as follows: 
 
• δrFTE :  The lateral position error (nm) 
• δvFTE:  The lateral position error velocity (nm/sec) 
• :        The scale factor of the forcing function c
• ω 0 :     The natural frequency of the system 
• β :       The damping of the system 
• :   The zero mean unity variance Gaussian white noise uFTE

 
For terminal flight segment during ILS localizer guidance, it was found that the lateral 
wander tended to increase linearly with the distance from the runway [T90]. This 
suggests that a FTE based on bearing deviation angle wander is more appropriate during 
the terminal flight phase. Therefore, a random wander of 0.24 degrees (1σ) with an 
approximate time constant of 90 seconds is appropriate. In the case of the ILS, the second 
order Gauss Markov process is written in terms of bearing deviation angle wander as 
shown in equation (11.2).  
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   (11.2) 

 
The new terms in equation (11.2) are as follows: 
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• δBILS FTE, :   The bearing deviation angle (deg) 
• δΩ ILS FTE, :  The bearing deviation rate (deg/sec) 
 

11.1 Operational Details 
The flight technical error is quite simple to implement using the Gauss Markov processes 
with valid error parameters. The three types of flight technical error only operate when 
the aircraft is operating under the route following guidance system. This guidance 
algorithm must prompt the particular flight technical error model being used for an 
update to the lateral position deviation, δrFTE . 
 

11.1.1 Piloted Flight Technical Error 
The piloted flight technical error proceeds once the Gauss Markov process has been 
initialized. For each time step that the piloted flight technical error is used, the  
Gauss Markov process is advanced one time step and a value for δrFTE  is returned. The 
piloted flight technical error uses a Gauss Markov process with the following parameters: 
 
• β = 0 50. :  The damping term. 
• σ p = 0 7.  nm :  The standard deviation of the ‘position’ 
• σ v = 0 011944.  nm

sec :  The standard deviation of the ‘velocity’ 
• ∆t = 0 5. :  The time step of the process (sec) 
 

11.1.2 FMS Flight Technical Error 
The FMS flight technical error proceeds once the Gauss Markov process has been 
initialized. For each time step that the FMS flight technical error is to be used, the Gauss 
Markov process is advanced one time step and a value for δrFTE  is returned. The FMS 
flight technical error uses a Gauss Markov process with the following parameters: 
 
• β = 0 50. :  The damping term. 
• σ p = 0 13.  nm :  The standard deviation of the ‘position’ 
• σ v = × −1 10 3.444  nm

sec :  The standard deviation of the ‘velocity’ 
• ∆t = 0 5. :  The time step of the process (sec) 
 

11.1.3 ILS Flight Technical Error 
ILS flight technical error is more complex because the Gauss Markov process is set up to 
return an angular deviation from the path rather than a linear distance.  Therefore the 
linear distance must be calculated from the angular deviation δBILS FTE,  which is returned 
in degrees. To get the lateral offset, equation (11.3) is used where ds  is the distance to go 
to the localizer. Generally, the ILS is modeled as a two segment route, where the first 
capture segment is from some arbitrary initial approach fix to the final approach fix, and 
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the second segment is from the final approach fix (the beginning of the glide slope for 
ILS approaches) to the localizer. Therefore, the distance that the aircraft is to the 
localizer can be calculated by using the rhumb line distance to a fix algorithm.  
 
 

δ π δr d BILS FTE s ILS FTE, sin= ,
F
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I
K180

     (11.3) 

 
The ILS flight technical error uses a Gauss Markov process with the following 
parameters: 
 
• β = 0 50. :  The damping term. 
• σ p

o= 0 3. :  The standard deviation of the ‘position’ 
• σ v = 0 06. deg

sec :  The standard deviation of the ‘velocity’ 
• ∆t = 0 5. :  The time step of the process (sec) 
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12. Model Verification and Validation 
Verification and validation of the algorithms used to develop the TGF simulation was 
accomplished primarily by using a small JAVA tool that served as a testing platform for 
the algorithmic development. This tool, which is named TGF-test, allowed for real time 
manipulation of aircraft trajectories on the screen and also monitored many of the 
aircraft’s state variables on the screen in the form of stripcharts. All algorithms that are 
coded in the main TGF simulation were first tested and evaluated in the TGF-test 
simulation. The main screen of the TGF-test algorithm is shown in Figure 12.1 where 
aircraft trajectories are superimposed over an electronic map of fixes and routes. The 
aircraft icon, which represents the flying aircraft, shows the heading orientation so the 
difference between ground track and heading can also be viewed visually.  
 

 
Figure 12.1.  Simulation Window for TGF-test 

 

-213- 



 

The aspects of the TGF simulation that needed verification are as follows: 
 
• Constant airspeed climbs and descents 
• Mach/CAS descents and CAS/Mach climbs 
• Speed changes during climbs and descents 
• Automatic route capture  
• Vectored route capture  
• Initial fix route capture 
• Segment transition 
• Flight technical errors 
• Navigation errors  
• Take-off and landing 
 
When appropriate, the TGF simulation model was compared to Pseudocontrol, the 
aircraft dynamics kernel of PAS. PAS, the NASA tool for trajectory generation, has been 
considered as an acceptable baseline for aircraft performance.  Such cases include the 
verification of climb and descent performance as well as speed changes. For other 
operations, such as route capture and route following, visually inspecting the maneuvers 
is sufficient to insure proper operation.  

12.1 Constant Airspeed Climbs and Descents 
The PAS model in Pseudocontrol uses much higher fidelity aircraft and engine models 
than what the TGF model uses, so it is expected that there would be some variation in 
performance. Generally, however, the difference in the actual trajectories generated by 
the simulations is negligible. While the trajectories are nearly identical, the TGF model 
does not produce fuel burn estimates which are as accurate as the PAS model because 
PAS uses many more coefficients in the model. Two comparisons of Pseudocontrol and 
TGF-test are presented in this section. 
 
The first comparison between Pseudocontrol and TGF-test is shown in Figure 12.2. 
Figure 12.2 illustrates an MD-80 at 10,000 ft and 280kts as it initiates a constant 
indicated airspeed climb to 30,000ft. Four stripcharts are shown in the plot, each 
representing a different aircraft state variable. These are Mach, indicated airspeed, 
altitude, and the lift coefficient. The Pseudocontrol plots are represented with the dark 
line and the TGF-test plots are shown in gray. The simulation shows a good match 
between the two models. Initially, there is a small fluctuation in the indicated airspeed of 
both models while the climb is established. Once the climb is established, both models 
hold the appropriate 280kt airspeed. The aircraft climb nearly identically in terms of 
altitude tracking. This is very important since the air traffic controllers are sensitive to the 
changing rate at which altitude increases. The Mach plot shows that both models track  
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Figure 12.2. Comparison of Pseudocontrol (black) and TGF-test (gray) in a constant indicated airspeed 

climb and 280kt 

 
Mach number identically as well. Considering the lower fidelity model represented in the 
TGF-test system, over Pseudocontrol, the data match is quite good.  
 
A similar comparison is made in a descent. An MD80 weighing 130,000lbs is 
commanded to descend from 30,000ft to 10,000ft at an airspeed of 300kts. The descent is 
shown in Figure 12.3. When the aircraft initiate the descent, there is some fluctuation in 
the indicated airspeed. In this example, the TGF-test model has a larger fluctuation than 
the Pseudocontrol simulation, but the fluctuation is still only 1.5kts. This small 
fluctuation is acceptable. Once the descent is established, both aircraft hold the 
commanded airspeed well. The altitude profile of the TGF-test aircraft matches the 
Pseudocontrol aircraft well and the Mach number varies properly also. 
 

12.2 Mach/CAS descents and CAS/Mach Climbs 
The idle thrust Mach/CAS descent and full thrust CAS/Mach climb are important 
features of the aircraft simulation because jet airliners are most likely to use these types 
of maneuvers for climbs and descents. Because the maneuvers are similar, this section 
will considers as its only test case, the idle thrust descent. Full thrust CAS/Mach climbs 
are simply reverses of the descents. 
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 When an idle descent is initiated, the throttle is pulled idle and the pilot descends at a 
rate so that the aircraft maintains the desired Mach of the desired Mach/CAS pair. At low 
speed and low altitude, convention dictates that the speed of aircraft be measured in 
terms of indicated airspeed. Therefore at some point during the descent, the pilot will 
capture the desired CAS of the Mach/CAS pair. As the pilot descends at a constant Mach, 
the indicated airspeed meter will show an ‘increase’ in speed. At some point during the 
descent, the indicated airspeed meter will read the desired indicated airspeed for the  
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Figure 12.3.  A comparison of Pseudocontrol (black) and TGF-test (gray) in a descent at a constant 

indicated airspeed of 300 kts 

 
descent. At this point, the pilot tracks the desired CAS instead of the Mach. Typically 
there are four stages to a Mach/CAS descent. These stages are: 
 
1. Change speed from the cruising Mach, M1, to the descent Mach, M2 .  
2. Descend at M2 . The aircraft descends atM2until reaching a predetermined CAS.  
3. Descend at constant CAS. The aircraft descends at its constant descent CAS until it 

reaches the metering fix crossing altitude, where it levels off. 
4. Decelerate to the metering fix crossing speed. Finally, the aircraft decelerates to 250 

kt, the metering fix crossing speed of typically 250kt.  
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For this section’s comparison between Pseudocontrol and TGF-test, we start with an 
MD80 at 30,000ft in cruise at M0.76. The aircraft initiates a Mach/CAS descent with the 
following speeds: (M0.76/320kt). The aircraft then levels out at 10,000 ft maintaining 
320kts. Figure 12.4 shows the maneuver. The match between the Mach and indicated 
airspeeds is good and the transition between Mach and indicated airspeed is smooth 
without any undesirable transients. Similarly, the level off at 10,000 ft is smooth without 
any overshoot. Most importantly, the altitude profiles for both simulations match very 
well.  
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Figure 12.4. Comparison of Pseudocontrol (black) and TGF-test (gray) performing a Mach/CAS descent 

from 30,000 ft to 10,000ft using an MD80 at 130,000lb 

 
  

12.3 Speed Changes 
Speed changes, while they do not take much time in the course of a flight, do give a good 
indication of the model’s fidelity in terms of drag and thrust. Consider an acceleration. 
For the aircraft to have the proper acceleration, in a speed up maneuver, the excess thrust 
must be correct. This excess thrust is a function of the total available thrust and the total 
drag. If either is off, the acceleration will not be right. However, errors in either could 
cancel each other out. For instance, a high drag number could be canceled by a high 
thrust value. Decelerations, because they are performed at idle thrust, tend to remove the 
thrust from the system so the primary deceleration factor is the aircraft’s drag. If 
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accelerations and decelerations are both studied, generally conclusions about both the 
drag and thrust can be made. The deceleration gives insight into the fidelity of the drag  
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Figure 12.5.  A deceleration of an MD80 from 350kts to 250kts while at 10,000ft using Pseudocontrol 

(black) and TGF-test (gray) simulation tools  

 
model, and the acceleration gives insight into the thrust to drag ratio. Assuming drag 
information is known from the deceleration, thrust information can be derived from the 
acceleration.   
 
First, a deceleration is considered. An MD80 at 130,000lbs cruising at 10,000 ft is slowed 
down from 350kts to 250kts. Figure 12.5 shows the deceleration maneuver. The two 
simulations show good agreement during the slowdown with no undesirable transients in 
either simulation. Furthermore, altitude is held constant at 10,000ft. From this plot we 
can assume that the drag information in the MD80 model is accurate.  
 
Next, an acceleration is considered. The same MD80 is accelerated from a cruise 
condition of 250kts and 10,000ft to 350kts while maintaining altitude. The maneuver is 
shown in Figure 12.6. The slope of the speed curves for both simulations match very 
well, suggesting that the thrust model for the aircraft is working well. The altitude is held 
reasonably well; however, the TGF-test model does show a slight tendency to let the  
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Figure 12.6.  An MD80 accelerating from 250kts to 350kts while maintaining 10,000ft using 

Pseudocontrol (black) and TGF-test (gray) simulation tools  

 
altitude drift slightly. The altitude variance shown on the plot is on the order of 10ft, so it 
is not a major concern.  From the results in Figure 12.5 and Figure 12.6 we conclude that 
the thrust and drag models for this aircraft are good.  
 
Speed changes are also performed at higher speeds to test the compressibility drag model. 
First a deceleration is considered as shown in Figure 12.7. An MD80 at 30,000ft and 
Mach 0.8 is decelerated to Mach 0.6. There is a slight discrepancy here between the 
Mach numbers of the two models. The TGF-test simulation takes longer to enter the 
deceleration whereas the Pseudocontrol model enters the deceleration immediately. One 
reason for this gentle initiation of the maneuver is that the TGF-test simulation models 
engine spooling whereas the Pseudocontrol model does not. Once the deceleration is 
established, notice that the two Mach lines are nearly parallel. This suggests that the rate 
of acceleration is very close but the slow initiation time on the part of TGF-test offsets 
the maneuver. The result is that the maneuver takes 7-10 seconds longer with TGF-test 
than it does with Pseudocontrol. Since the rate of acceleration is nearly the same, we 
know that the drag models are very close. The difference in initiation is explained by the 
differences in the spooling lags of the engines and some differences in control system 
design. If the longer deceleration is a problem, the effectiveness of the spooling lags 
could be decreased.  Presently this is not a concern.    

-219- 



 

 

 

0 10 20 30 40 50 60 70 80
0.7

0.75

0.8
M

ac
h

0 10 20 30 40 50 60 70 80
260

280

300

320

IA
S

 (
kt

)

0 20 40 60 80 100 120 140 160 180 200
2.95

3

3.05
x 10

4

A
lti

tu
de

 ft

0 10 20 30 40 50 60 70 80
0.35

0.4

0.45

0.5

time (sec)

C
L

Figure 12.7.  An MD80 decelerating from Mach 0.8 to Mach 0.6 while maintaining 30,000ft using  
Pseudocontrol (black) and TGF-test (gray) simulation tools 

 
The Mach acceleration is shown in Figure 12.8, where the MD80 accelerates from Mach 
0.6 to 0.8 while maintaining 25000 ft of altitude. Here we do not see the same spooling 
lags in the initiation of the maneuver. Since the spooling lags are the same for both 
increases and decreases in thrust level in the TGF-test model, there is no easy explanation 
for the discrepancy. At any rate, the two models are virtually identical in the Mach 
acceleration.  
 

12.4 Speed Changes during Climbs and Descents  
One of the more insidious problems encountered during the design of the longitudinal 
control system was the problem of  changing speeds during climbs and descents. Section 
4.2 of the longitudinal control system discusses the problem in depth and explains how 
the ultimate solution to the problem was the ramping of inputs. Generally, the problem 
centered around the fact that large speed changes while climbing or descending was not 
anticipated, and the feedback control system was only set up to handle small changes. 
This meant that the control system had rather high gains to keep the speed errors small.  
When the high gains were applied to the large errors, the maneuvers became  
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Figure 12.8.  An MD80 accelerating from Mach 0.6 to Mach 0.8 while maintaining 25,000ft using  

Pseudocontrol (black) and TGF-test (gray) simulation tools 

 
violent.  It was easy to see what was happening. During climb and descent, the control 
stick rather than the throttle is used to control speed. Therefore, when the feedback 
control system saw large errors from a user, the control stick was moved violently to 
correct the situation. This section uses TGF-test to demonstrate the speed changes during 
climbs to illustrate the stability of the maneuvers using the ramped inputs.   
 
Figure 12.9 illustrates an MD80 which is initially at 10,000ft and 250kts. A climb is 
initiated to 30,0000ft. During the climb, the speed of the aircraft is first increased to 
320kts and then reduced to 280kts. Finally the speed is increased to 300kts where it is 
held until the aircraft completes the climb. The point of the plot is that speed changes are 
made gracefully and do not cause any unusual patterns in the altitude profile other than 
the normal affects associated with the change of speed during a climb. Furthermore, 
attention to the lift coefficient curve shows that the control system is well behaved and is 
not commanding unreasonable control inputs. There also isn’t any chatter in the system. 
 

-221- 



 

0 200 400 600 800 1000 1200 1400
0.4

0.6

0.8

M
ac

h

0 200 400 600 800 1000 1200 1400
250

300

350

IA
S

 (
kt

)

0 200 400 600 800 1000 1200 1400
0

1

2

3
x 10

4

A
lti

tu
de

 ft

0 200 400 600 800 1000 1200 1400
0

0.5

1

time (sec)

C
L

 
Figure 12.9. An MD80 in a climb with various speed changes using the TGF-test simulation 

 
This is a direct result of the ramped inputs preventing large errors from occurring in 
Regions 3 and 6.  

12.5 Automatic Route Capture 
The TGF-test algorithm uses several route capture algorithms to capture routes. The first 
of these is the automatic route capture algorithm which captures a route regardless of the 
aircraft’s location with respect to the route or its orientation. To verify this always works, 
many test cases were run. Generally, the key aspects which determine a good capture are 
whether or not the aircraft chooses a reasonable segment, and whether or not overshoot is 
excessive.  Some of the more difficult test cases are presented in this section.  
 
The first capture, shown in Figure 12.10, illustrates the case where the aircraft is very 
close to a segment along a route but headed in the wrong direction. When the route 
capture algorithm is initiated, the automatic route capture algorithm rightly chooses the 
segment which is closest to the aircraft. Then the algorithm calculates a dynamic fix for 
intercept along the route. However, because the aircraft is already so close to the 
segment, the aircraft penetrates the 1 turn radii boundary defining the route following 
algorithm  
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Figure 12.10.  Automatic route capture with the aircraft close to the route but headed in the wrong 

direction 

 
long before the aircraft is able to converge on a heading to the dynamic fix. Therefore, 
this particular scenario is a test of the route following algorithm more than it is a test of 
the automatic route capture algorithm.  It demonstrates that the route following algorithm 
can handle large discrepancies in aircraft heading relative to the bearing of the segment. 
The aircraft makes a right turn towards the segment and then slightly overshoots the 
segment. This overshoot is unavoidable because the aircraft is well within 2 turn radii of 
the segment before the maneuver is initiated. The performance shown in  Figure 12.10 is 
exactly what is desired. 
 
The next route capture maneuver, shown in Figure 12.11, demonstrates the case where 
the aircraft is at a considerable distance from the capture segment. This route capture 
demonstrates the use of the dynamic fix. As stated in Section 8.4.3.1, the dynamic fix is 
an imaginary fix which is created by the system at some location along a segment and is 
used as a point of reference for capture. When the automatic route capture algorithm was 
first conceived, it seemed as though the most obvious method of capturing the route was 
to fly some intercept heading to the route.  For instance, once the capture segment was 
determined, the aircraft could be given an intercept heading of 45 degrees and intercept 
the segment. However, this method seemed to have some inherent limitations. First, the 
aircraft would always intercept using 45  
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Figure 12.11.  Automatic route capture with an aircraft far from the capture segment 

 
degrees regardless of how far the aircraft was away from the segment. An aircraft far 
away from the capture segment might pass the segment before ever capturing it. Figure 
12.11 illustrates an example of this type of capture situation.  
 
To avoid the problem of aircraft overshooting capture segments, a dynamic fix is placed 
on the segment to be captured, and the aircraft is commanded to fly toward the dynamic 
fix.  In this case the further aircraft naturally uses a larger intercept angle as seen in 
Figure 12.11. This system insures that the proper segment is captured and also provides 
some apparent variety in intercept angles so that all aircraft do not appear to behave the 
same. The capture algorithm does exactly what is expected. The automatic route capture 
guidance converges on a heading that leads directly to the dynamic fix, and then captures 
the route when the aircraft is within 1 turn radii of the segment. There is no overshoot 
because the aircraft is given enough space to maneuver in this example.  
 
The track in Figure 12.11 also demonstrates one other important performance trait of the 
algorithm. The algorithm switches segments and captures the next segment along the 
route without overshoot in spite of the acute angle which joins the segments. This 
example demonstrates the effectiveness of the segment transition algorithms at assuring  
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smooth segment transition regardless of segment geometry. The case shown in Figure 
12.11 is a more difficult segment transition maneuver. 
 
Figure 12.12 is the least sensational of the capture examples in that it demonstrates a 
rather easy and likely scenario. The aircraft is relatively close to the capture segment and 
heading in the general direction of the segment. Therefore, the aircraft captures the 
segment with ease. This example does show how the dynamic fix does make the capture 
angles vary as a function of the distance that the aircraft is from the segment. Being 
relatively close in this example, the aircraft takes a smaller intercept angle which is 
apparent in the difference between the original heading and the intercept heading. Note 
that in this case, the original heading would have intercepted the segment as well.  When 
the aircraft is well within 1 turn radii, the aircraft turns to intercept the segment without 
any overshoot. This is exactly what is desired.  
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Figure 12.12.  Automatic route capture with the aircraft headed perpendicular to route 

 
The final automatic route capture example, shown in Figure 12.13, demonstrates the 
capture of a route from an ambiguous area relative to the route. As discussed in Section 
8.4.1, there is a “dead” region where two segments meet as shown in Figure 12.13. If an 
aircraft is in this region,  the normal segment determination algorithms will find that the 
aircraft is in front of the trailing segment, behind the leading segment, and will not return 
a capture segment. In this case, another criteria is used which checks the aircraft’s  
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Figure 12.13. Automatic route capture with aircraft in an ambiguous region between segments 

 
distance from every segment’s trailing fix. It then chooses to capture the segment that is 
associated with the closest trailing fix. In Figure 12.13, the latter logic is used to 
determine the appropriate capture segment. Once the appropriate segment is determined, 
the aircraft is flown towards a dynamic fix and ultimately captures the segment with no 
overshoot.  
 

12.6 Vectored Route Capture 
The vectored route capture algorithm steers the aircraft along a user specified heading 
until the aircraft intercepts the route. Each time step, the algorithm determines which 
segment is best to capture and, each time step, the algorithm determines if it is time to 
merge onto the route.  It should be noted that the algorithm has no control over the initial 
heading. Therefore, if the user supplied heading steers the aircraft away from the route, 
the guidance law is not able to do anything about it although it will provide a warning if 
the aircraft is unlikely to intercept the route. It is important that this algorithm work 
properly because it is the most heavily used capture algorithm.  
 
Because the vectored route capture algorithm does not choose the intercept heading, it 
must be prepared to work with all intercept headings, including those which may be poor  
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choices. To test the vectored route capture algorithm several poor choices are provided. 
The first scenario, shown in Figure 12.14, demonstrates a vectored heading where the 
choice of capture segments is ambiguous. Because the algorithm can not control the 
heading of the aircraft, it is possible that the best capture segment could change 
depending on the aircraft’s flight path. In our scenario, the aircraft is initially pointed so 
that the flight path will intercept the front end of the trailing segment; however, the best 
segment for capture is actually the next segment along the route. The aircraft realizes this 
and turns onto that segment without overshoot when the segment proximity permits. 
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Figure 12.14.  Vectored route capture from an ambiguous position 

 
Figure 12.14 also shows the aircraft transitioning to a new segment while on the route. 
This maneuver provides another example of the segment transition logic at work where 
the transition between segments occurs without any overshoot. This is good performance. 
Notice that the aircraft track is stopped just as the aircraft starts to make the turn onto the 
final segment at the route.  
 
The final example of vectored route capture is shown in Figure 12.15. In this example, 
the aircraft is commanded to capture a route while being vectored on a heading which 
tends to be in the opposite direction of the route. This type of capture is particularly 
challenging because the aircraft must make such a large turn to capture the segment. As 
can be seen in Figure 12.15, the aircraft maintains the vectored heading until it is time 
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Figure 12.15. Vectored route capture when the vectored heading tends to be in the opposite direction of 

the route 

to merge onto the route. Once the appropriate distance is reached, the aircraft merges 
with the route with no overshoot.   
 

12.7 Initial Fix Route Capture 
One requirement for the simulation was that the aircraft had to be able to start flying 
along a route by passing through the initial fix. This type of route capture algorithm is 
actually the least complicated because there is no need to determine a capture segment 
and there is no need to determine when to initiate route following. The route following is 
initiated as soon as the aircraft passes through the initial fix. Several examples of this 
maneuver are shown. 
 
The first example, shown in Figure 12.16, illustrates the unlikely case where the aircraft 
is commanded to fly back to the beginning of the route from some location in front of the 
route. This maneuver turned out to be very handy for testing, but it is not likely to be 
used much in practice. It is interesting to see how this algorithm differs from the other 
capture algorithms. The algorithm directs the aircraft to fly to the initial fix. However, 
unlike the automatic route capture algorithm, the initial fix capture flies the aircraft 
through the initial fix before capturing the route. This method guarantees overshoot when 
used in this  
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Figure 12.16. The initial fix capture algorithm being used to vector an aircraft back to the beginning of 
the route 

 
fashion. Naturally, this algorithm is really designed to assure that an aircraft behind a 
route captures the route by flying through the first fix. This case is illustrated in Figure 
12.17. Notice that when the algorithm is used as it is intended, the overshoot is 
minimized. However, there will usually be some overshoot because the algorithm is 
constrained to fly through the initial fix.  
 

12.8 Segment Transition  
The segment transition algorithm controls when the aircraft initiates a turn from one 
segment to another. The algorithm must initiate a turn with enough space to smoothly 
make the transition. Because so many examples of segment transition are contained in the 
plots dealing with route capture, no additional plots are presented here. The reader should 
observe the transitions in Figure 12.10, Figure 12.11, Figure 12.14, and Figure 12.15. 
Figure 12.10 shows a typical segment transition where the difference in bearing angle 
between segments is small. The aircraft manages these without difficulty. The other 
examples all deal with transitions between segments with large bearing differences. 
These are more complex because the amount of space allotted for the transition is  
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Figure 12.17.  An aircraft capturing a route from behind using the initial fix capture algorithm 

 
more constrained. Excessive overshoot occurs if the transition logic isn’t designed to 
handle these cases. As can be seen from the plots, the current segment transition logic has 
no difficulty with these types of maneuvers.  
 

12.9 Flight Technical Error  
The flight technical error (FTE) is the inability or the inattention causing the pilot to steer 
the aircraft perfectly along the desired course. If the aircraft is steered by an autopilot, it 
is the error in steering the aircraft perfectly along the intended course. In terms of the 
previous navigation error sources, the FTE is considered to be the guidance and control 
error, where only the guidance error is included. The waypoint and navigation aid errors 
are not included. For the TGF simulation, there are two distinct flight technical errors 
modeled. The first flight technical error is the piloted flight technical error, the error 
associated with a human pilot following a route. The second error is the FMS error, the 
error associated with an FMS driven autopilot guiding the aircraft. Generally, the only 
difference between these errors is the magnitude of the standard deviation and the 
frequency of the mode. The statistics summary is reprinted in Table 12.1 
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Table 12.1 Error Statistics Summary 

Error Source Type Bias (1σ) Beta 
FMS Enroute FTE 2nd Order 

Gauss Markov 
0.13 nm 
5.2 kts 

0.7 

Piloted Enroute FTE 2nd Order 
Gauss Markov 

0.7 nm 
42 kts 

0.5 

 
Generally, the only means of testing the final algorithms is to make sure that the lateral 
variation stays within the standard deviation requirements. This is difficult to do using 
graphical representation of trajectories, so generally tabulated data were used to verify 
the flight technical error. However, the trajectories provide a richer understanding of 
what the flight technical data does to the simulation. 
 
Four plots are presented in this section demonstrating the en route flight technical error 
developed for the simulation. These plots were all created using a closed route so that an 
aircraft would fly around the same route creating a Monte-Carlo simulation. The route 
was flown at different speeds using both piloted and FMS flight technical error. Figure 
12.18 shows an aircraft flying at 250kts and 5000ft. This is a relatively slow 
configuration so the trajectories show a considerable amount of ‘wobbling’ back and 
forth along the route. This is because the frequency of the lateral flight technical error is 
not a function of the aircraft’s speed. Because the aircraft covers a greater distance per 
unit of time when moving faster, the flight technical error always appears to be more 
extreme in slower aircraft. This point is aptly demonstrated when Figure 12.18 is 
compared to  
Figure 12.19 where a piloted aircraft is traveling at 300kts and 30,000ft. Even though the 
same flight technical error is in effect, the faster aircraft appears to have less ‘wobble’ in 
it trajectory, although the lateral offset of both plots is about the same.  
 
The final two plots show the same aircraft using FMS. Figure 12.20 shows the aircraft 
moving at 250kts and 5000ft. Figure 12.9 shows the aircraft moving at 300kts and 
30,000ft. Since the FMS has only about 20% of the lateral offset that the piloted flight 
technical error has, the aircraft trajectories are much tighter. This reduction in lateral 
offset over the piloted flight technical error is readily apparent; however, it is not 
impossible to get a sense for the ‘wobble’ of the aircraft along the route in either plot, 
with this scale of distance.  
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Figure 12.18.  Piloted flight technical error of an MD80 traveling at 250kts and 5000ft 
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Figure 12.19.  Piloted flight technical error of an MD80 traveling at 300kts and 30,000ft 
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Figure 12.20.  FMS flight technical error of an MD80 traveling at 250kts and 5000ft 

 
Figure 12.21.  FMS flight technical error of an MD80 traveling at 300kts and 30,000ft 
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12.10 Navigation Errors 
The purpose of navigation error modeling is to model the variances which occur in 
aircraft flight paths as a result of imperfect information. The two navigation types 
generally used within the simulation at this point for en route types of operation are 
VOR/DME and GPS navigation. All of the navigation models perform similarly in that 
they create a perturbed estimate of the aircraft’s location for the guidance system to use 
as an input. Therefore, the navigation error models all return a latitude longitude pair 
which represents the aircraft’s position as determined by imperfect navigation.  
 

12.10.1 GPS Navigation Error 
The GPS navigation error is so small that it is generally undetectable, for the typical 
scales used. For the purposes of completeness, a plot of GPS error over a route is 
generated, but for en route purposes, GPS error is small enough to warrant ignoring it 
completely. Figure 12.22 shows an aircraft flying a route. Unfortunately, there is no way 
of seeing the aircraft track because it is so superbly hidden by the route line itself. Even 
exploded views of this plot fail to reveal any interesting variation between GPS and the 
route. 
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Figure 12.22.  An aircraft trajectory using GPS navigation 
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12.10.2 VOR/DME Error 
The navigation errors associated with VOR/DME error is much more interesting than 
those associated with GPS from a modeling point of view. Generally, VOR/DME 
navigation systems have biases in their angular measurements which tend to make lateral 
offset errors grow as a function of distance from the nav-aid. The errors also produce 
interesting quirks when VOR receivers are switched during navigation. For instance, an 
aircraft that is following one VOR for a portion of a segment may develop a lateral offset 
on one side of the segment and upon switching to the next VOR, immediately develop a 
lateral offset on the other side of the segment. 
 
The first scenario considered is shown in Figure 12.23 where an aircraft is tracking a 
segment which has a VOR/DME at each endpoint. The northerly most station has a slight 
easterly bias which tends to make the aircraft track to the east of center. The southerly 
VOR/DME tends to have a slight westerly bias which makes the aircraft track to the west 
of center.  
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Figure 12.23.  An aircraft flying a segment using VOR/DME navigation where both endpoints are 
VOR/DME stations 

 
The aircraft is heading southwest along the segment, and it first captures the route shortly 
after passing the northerly VOR/DME. The aircraft then tracks the course using a signal 
from the northerly VOR/DME. As the aircraft progresses along the route, the aircraft 
drifts to the east slightly. When the aircraft passes the midpoint of the segment, the 
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aircraft switches nav-aids and uses the southerly VOR/DME instead. Upon tuning in this 
nav-aid, the aircraft crosses over the route and tracks on the other side because of the  

 

 
slight westerly bias associated with the southern VOR/DME station. As the aircraft 
approaches the station, the error becomes smaller as would be expected.  
 
The second scenario, shown in Figure 12.24, illustrates an aircraft following a route 
which has a VOR/DME station at each of its endpoints. However, there are two 
intersections in between the VOR/DME stations making three distinct segments. Because 
of this arrangement, the center segment does not have a VOR/DME station associated 
with it. In this situation, the algorithm must choose between the southerly VOR/DME 
and the northerly VOR/DME to determine which is most appropriate to use for 
navigation. From visual inspection, the human pilot would automatically choose the 
northerly most VOR/DME because the center segment is nearly perfectly aligned with a 
radial from that station. Using the southerly VOR/DME would require some sort of area 
navigation technique.  
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Figure 12.24. An aircraft flying a route comprised of 2 VOR/DME stations with 2 intersections between 
the VOR/DME stations 

 
The aircraft is initially headed northeast on the first segment using the southerly 
VOR/DME for navigation. Because this is the only VOR/DME associated with the first 
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segment, the aircraft does not switch nav-aids. However, when the aircraft switches to the 
middle segment, it must make a decision about which VOR/DME station to use.  As 
discussed in the last paragraph, the northerly VOR/DME is the best one to use and in 
fact, we see that the northerly VOR/DME is the one chosen by the algorithm for 
navigation. We know this by observing the bias that the aircraft takes after switching 
between the first segment and the middle segment. The aircraft has an easterly bias which 
is associated with the northerly VOR/DME. This bias is continually decreased as the 
aircraft flies further towards the VOR/DME and crosses onto the final segment. 
Eventually, when the aircraft crosses the northern VOR/DME, the bias is reduced to zero.  
 
There is one other characteristic to note regarding the crossing of segment 1 onto 
segment 2. Notice that the aircraft is using DME to determine the end of the route rather 
than the intersection of VOR/DME radials. If the intersection of VOR/DME radials was 
used to determine the fix location, the aircraft would have estimated the fix location to be 
northeast of the actual fix location. Rather, the aircraft estimates the end of the route with 
near perfection in spite of the VOR radial biases. This is a trait of an aircraft equipped 
with DME as opposed to one which only has VOR navigation. This segment transition 
phenomena is one of the distinguishing characteristics of VOR/DME navigation as 
opposed to VOR/VOR navigation which is not currently modeled in the system.  
 

12.11 Terminal Flight Phases 
The terminal flight phases for the aircraft consist of take off and landing.  These 
maneuvers are different than any which have been considered so far because they require 
that the aircraft fly slowly and interact with the ground.  
 

12.11.1 Take-Off 
During take-off, the aircraft initially accelerates down the runway with the landing gear 
initially supporting all of the aircraft weight. This phase of take-off is referred to as the 
ground roll.  The lift coefficient is held at zero. Since we assume coordinated flight, we 
do not concern ourselves with keeping the aircraft on the centerline. When the aircraft 
reaches rotation speed, the lift coefficient of the aircraft is increased until the aircraft 
leaves the ground and starts climbing.  The landing gear is retracted as soon as the 
aircraft has climbed several hundred feet. Once the landing gear is retracted, the 
maximum available throttle is reduced to 90% of maximum possible throttle. Next, the 
aircraft accelerates to a new speed of 210 kt. While speeding up, the flaps are retracted as 
the proper speeds are obtained. Retraction of the flaps is the last commands issued by the 
navigator for take-off.  
 
Figure 12.25 illustrates the take-off of an MD80 aircraft weighing 130,000lbs. The 
aircraft initiates the takeoff ground roll at 20 seconds into the strip chart recording. 
Roughly 40 seconds later, the aircraft has achieved sufficient speed for rotation. Looking 
at the lift coefficient plot, we see the initial lift coefficient spike which is the control 
system executing the rotation. As the aircraft starts to lift off the ground we see the speed 
initially stabilize right around the rotation speed. Then, the aircraft starts to accelerate at 
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a slower rate towards 210kts. Upon reaching 210kts, the aircraft holds a constant speed 
and  
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Figure 12.25.  An MD80 at 130,000lbs taking off  with a rotation speed of 150KIAS 

 
 
continues to climb. Notice that the rate of climb increases when the aircraft stabilizes at 
210kts.    
 
One of the important features of this take-off example to notice is the simultaneous 
acceleration and climb between 60sec and 120sec. From Figure 12.1, we know that on 
takeoff the aircraft climbs and accelerates simultaneously. To cause this, special ramping 
of the speed input is performed as discussed in Section 12.4.3.  

12.11.2 Landing  
The final approach and landing is quite possibly the most difficult of all maneuvers to 
simulate. The aircraft must automatically follow an approach to an airport, maintaining 
the appropriate altitudes all along the path, and then capture the ILS localizer and glide 
slope for the final vertical descent. Finally, the aircraft must touchdown. All through the 
maneuver, the control logic must monitor and command the proper aircraft speed and 
make sure that the appropriate flap settings are deployed. Furthermore, the entire final 
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approach is flown on the back side of the thrust curve, the most difficult flight regime for 
the control logic.     
 
The terminal flight phases are also the most difficult to verify. Pseudocontrol does not 
land aircraft so there is no acceptable baseline for insuring that the longitudinal dynamics 
are proper. Therefore, verification of the longitudinal performance on landing and take-
off consisted of making sure that the aircraft performance conformed to the performance 
data which were used to create the algorithms. Such data are contained in Figures 12.1 
and 12.2.  
 
First, the longitudinal dynamics is considered. Figure 12.26 shows an MD80 on final 
approach and landing to an airport. By the time Figure 12.26 starts recording the 
approach, the aircraft has already slowed to 170kts and has captured the localizer. At 
roughly 55 seconds, the aircraft captures the glide slope. The aircraft simultaneously 
slows down to its final approach speed of 130kts. At roughly 180 seconds, the aircraft 
touches down and the brakes are applied. The speed reduces quickly and the aircraft is 
brought to a standstill by 210 seconds. 
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Figure 12.26.  Longitudinal view of an MD80 on final approach and landing 
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Figure 12.27 illustrates the top view of the same MD80 from Figure 12.26. The aircraft 
has already captured the localizer when the track starts. The aircraft is heading southeast 
along the ILS. The first circle along the route is an initial approach fix located 20 miles 
from the airport threshold, which is marked by an ‘X.’ The second circle, which is 5 
miles from the threshold, is the final approach fix for the ILS.  For this example, both the 
flight technical error and the ILS beam bending model are in effect. However, as can be 
seen from the track in Figure 12.27, little variation is seen. This is expected considering 
the small standard deviations which are measured from actual data. The aircraft touches 
down near the threshold and stops moving about 3000 ft later.   
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Figure 12.27.  A top view of an MD80 on final approach to landing 

 

12.12 Conclusions  
The testing that was done to verify and validate the TGF simulation gives us a high 
degree of confidence that the models contained herein have sufficient fidelity for use as a 
target generating tool.  
 
Generally, there were two means of verifying and validating the system. For the 
longitudinal dynamics, a quantitative measuring tool was needed to insure that the 
aircraft performance was realistic. The tool used was Pseudocontrol, the aircraft 
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dynamics kernel of PAS. PAS, the NASA tool for trajectory generation, has been 
accepted as an acceptable baseline for aircraft performance. For the guidance operations, 
such as route capture and route following, visually inspecting the maneuvers is sufficient 
to insure proper operation. Repeated testing of algorithms was done to insure that the 
route capture and route following algorithms would capture the route from all different 
initial conditions. Examples of the most difficult initial conditions have been discussed in 
this section.   
 
Flight technical error and navigation error was validated by making sure that the modeled 
variances conformed to the real flight data statistics which were used to construct the 
models.  
 
Terminal flight phases were the most difficult to verify because of the lack of information 
available for actual aircraft descents and landings. Information from flight handbooks and 
performance manuals was used to verify as best possible the aircraft performance on 
landing.  
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Appendix A 

Analysis of the Transfer Functions of the Longitudinal 
Dynamics 

 
In the original version of this document (in section 3.3), an analysis was conducted on the 
transfer function between a lift coefficient input and an altitude rate output for a single-
input, single-output (SISO) system. This was intended to provide insight to the 
controllability of altitude rate using lift coefficient. There was concern about the right-
half-plane zeros in the transfer function when the aircraft is flying on the back-side of the 
thrust curve. The analysis concluded that a control reversal occurred in this regime 
making it impossible to maintain stable flight when using lift coefficient to control 
altitude rate. 
 
The analysis failed to consider that in steady, level flight on the back-side of the thrust 
curve, the system is not SISO; thrust is used to control speed while lift coefficient is used 
to control altitude rate. And in level acceleration where the system is SISO, the linearized 
system of equations (3.27) and (3.28) does not apply. The reader is reminded that the 
system is linearized about a steady, level reference condition in which thrust equals drag. 
In level acceleration, the throttle is advanced to full and is greater than drag and energy is 
being added to the system. A similar argument can be made for level deceleration. 
 
To get an indication of the response of the altitude rate to lift coefficient input in steady, 
level flight, we can modify the LTD system of equations to absorb the thrust control and 
then analyze the system as a SISO, LTD system. The purpose of this appendix is to blend 
the optimized thrust control gains of Chapter 4 into the LTD system and then analyze the 

CLP

h
u

∆ &  transfer function. The analysis shows that, in this dual input, dual output system, 

thrust is adjusted to counteract the adverse effect of the changing lift coefficient on the 
speed so that the commanded altitude rate can be captured. Equations (4.26) are restated 
here. 
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The control law is reduced from equation (4.14). 
 

 

14

22

14

22

0

0

0

0

CL

T

CL

T

P p

P p

i i

ii

u k

u k M
u k

ku

   
   

∆ 
h

  = = −     ∆    
     

u &  

 
In order to incorporate the thrust control into the LTD system, the thrust and lift 
coefficient controls must first be separated. We also re-introduce the vectors as explicit 
functions of time. 
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Then, assuming KT is known. 
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We arrive at the transfer function by converting to the laplace domain and solving the 
matrix algebra. 
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We first solve for the closed-loop A matrix. 
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Computation of the inverse of this matrix is not trivial. We arrived at the solution using 
the algebraic matrix inversion functions of MATLAB®. 
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Because of the form of the C-matrix, which pre-multiplies the ( ){ } 1
s

−
I - A - BK CT  

matrix in the equation (A.1), the 
CLp

h
u
&

)

∆  transfer function is concerned only with second 

row of the { ( } 1
s

−
I - A - BK CT  matrix. (Note:  transposed notation is used to conserve 

page space.) 
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Post-multiplying the B-matrix, we get, 
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and pre-multiplying the C-matrix, we get, 
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The 
CLp

h
u

∆ &  transfer function is element (2,1) of the ( ){ } 1
s

−
- A - BK C BTC I  matrix. 
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We verify that by setting  and substituting in the matrix partial derivatives, 
we get equation (3.67). 
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But of course, we are concerned with analyzing the transfer function with the optimized 
thrust gains left in. For a B763 at stall speed and 30,000 ft. equation (A.2) becomes, 
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which has complex conjugate zeros at z1,2 = -0.19 ± 0.152. In other words, thrust control 

of speed moves the 
CLp

h
u

∆ &  transfer function zeros into the left-half plane, thereby 

eradicating the non-minimum phase system. The integral control transfer function, 

CLi

h
u

∆ & , is the same as equation (A.2) except with an added integral pole at s = 0. The 

root loci of proportional and integral 
L

h
C
&∆  transfer functions with thrust control of 

speed are shown in Figure A.1. The figure shows that lift coefficient control of altitude 
rate is well-behaved as long as speed is controlled by thrust simultaneously. We do, 
however, have to be mindful of low damping in this area, as indicated by the locus 
moving up the imaginary axis of the integral control root locus plot. 
 

 
Figure A.1: The root loci of proportional and integral lift coefficient control of altitude rate considering 

the thrust control of speed 
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Glossary 
Azimuth An angle measured relative to the ground-based coordinate 

system (i.e., true north). 

Bearing The azimuth direction of the position vector from one point to 
another (e.g., from an aircraft to a fix). 

Drag The component of aerodynamic force acting parallel to the 
aircraft's longitudinal axis and in a direction opposite the 
thrust. It is defined positive in the direction of the negative x-
axis of the body axis system. 

Dutch Roll Mode A coupled roll and yaw motion that is often insufficiently 
damped. 

Empty Weight The weight of a fully operational aircraft without fuel or 
payload. 

Flight Path Angle The angle that the true airspeed vector makes with a horizontal 
plane. 

Fuel Weight The fuel capacity of the aircraft. 

Geocentric Latitude The angle between a line from center of the earth to the given 
point and the equatorial plane. 

Geodetic Latitude The angle between a line perpendicular to the surface of the 
ellipsoidal earth at the given point and the equatorial plane. 

Ground Track Heading The angle that the aircraft's ground speed vector makes with 
the ground-based coordinate system (i.e., true-north). This is 
the azimuth of the aircraft’s velocity vector. The difference 
between ground track heading and true heading is due to the 
wind. 

Ground Track Speed The speed of the aircraft over ground. In other words, it is the 
magnitude of the aircraft’s true airspeed projected to a 
horizontal plane. 

Heading The azimuth of the aircraft's nose (i.e., longitudinal axis). 

Indicated Airspeed This is the speed shown by an aircraft's airspeed indicator, as 
calculated from the measured local dynamic pressure. Its 
difference from true airspeed increases with altitude. (Also 
known as Calibrated Airspeed.)   
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Lift The component of aerodynamic force acting normal to the 
plane formed by the true airspeed vector and the aircraft's 
lateral axis. 

Mach Number The ratio of the true airspeed to the local speed of sound. 

Magnetic [Azimuth] An azimuth angle (e.g., heading, bearing) measured relative to 
magnetic north. 

Payload Weight The payload capacity of the aircraft. 

Phugoid Mode An oscillatory mode of aircraft dynamics in which kinetic and 
potential energy are exchanged. The angle of attack is mainly 
unchanged. 

Pitch Angle The angle that the aircraft's longitudinal axis makes with the 
ground.  (Also known as Elevation Angle)  

Rhumb Line A straight line on a Mercator projection of the earth. It is 
convenient in navigation because it yields the constant bearing 
to be followed for navigating between the two end points of the 
rhumb line. 

Roll Angle The angle that the aircraft's lateral axis makes with the ground.  
(Also known as Bank Angle) 

Short Period Mode An oscillatory motion in the axis of rotation of pitch. The angle 
of attack is constantly changing. This mode is typically much 
faster than the phugoid. 

Thrust The thrust force created by the aircraft's engines. Acts along 
the aircraft's longitudinal axis and is defined positive in the 
direction of the x-axis of the body axis system. 

True [Azimuth] An azimuth angle (e.g., heading, bearing) measured relative to 
true north. 

True Airspeed The actual speed of the aircraft relative to the surrounding air 
mass. 
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Acronyms 
ADM aircraft dynamics model 

AGL above ground level 

AMT aircraft modeling tool 

ATC air traffic control 

ATM air traffic management 

BADA Base of Aircraft Data 

CAS calibrated airspeed 

DIS Distributed Interactive Simulation (DIS provides a military 
standard earth coordinate system.) 

DME Distance Measure Equipment 

DOF degree of freedom 

ECEF earth-centered, earth-fixed 

FAA Federal Aviation Administration 

FTE flight technical error 

GPS Global Positioning System 

IAS indicated airspeed 

LTD linear, time-dependent 

NAS National Airspace System 

NED the North-East-Down coordinate system 

RNAV Radio Navigation 

SISO single input, single output 

TGF Target Generation Facility 

VOR VHF Omnidirectional Range navigation system 
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